

Daniela Bezáková, Ivan Kalaš (Eds.)

ISSEP 2011
Proceedings of Selected Papers

5th International Conference on
Informatics in Schools: Situation, Evolution and Perspectives

Bratislava, Slovakia, October 26 – 29, 2011

Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

 ISSEP 2011

 2

ISSEP 2011
Informatics in Schools: Situation, Evolution and Perspectives
Proceedings of 5th International Conference ISSEP 2011 – Informatics in Schools: Contributing
to 21st Century Education. 26 – 29 October, 2011
Bratislava, Slovakia

Conference organized by
Association of the Infovek Project
and
Faculty of Mathematics, Physics and Informatics
Comenius University,
Bratislava, Slovakia

Edited by: Daniela Bezáková and Ivan Kalaš
Production: Daniela Bezáková and Andrea Hrušecká
Graphic design: Martina Kabátová

All papers have been reviewed by the International Review Committee
D. Alimisis (Greece)

P. Antonitsch (Austria)

D. Bezáková (Slovakia)

P. Boytchev (Bulgaria)

V. Dagiene (Lithuania)

M. Forišek (Slovakia)

K. Fuchs (Austria)

G. Futschek (Austria)

D. Ginat (Israel)

B. Haberman (Israel)

J. Hromkovič (Switzerland)

P. Hubwieser (Germany)

K. Huizing (The Netherlands)

T. Jevsikova (Lithuania)

M. Kabátová (Slovakia)

I. Kalaš (Slovakia)

E. Kołczyk (Poland)

Ch. Koncilia (Austria)

Z. Kubincová (Slovakia)

P. Micheuz (Austria)

R. Mittermeir (Austria)

M. Moro (Italy)

R. Motschnig (Austria)

V. K. Proulx (USA)

R. Romeike (Germany)

Ľ. Salanci (Slovakia)

S. Schubert (Germany)

A. Semenov (Russia)

J. Sendova (Bulgaria)

C. Sperry (USA)

P. Stechert (Germany)

M. Sysło (Poland)

M. Tomcsányiová (Slovakia)

J. Vaníček (Czech Republic)

T. Verhoeff (The Netherlands)

B. Weger (The Netherlands)

M. Weigend (Germany)

M. Winczer (Slovakia)

E. Zur (Israel)

Published by Library and Publishing Centre, Faculty of Mathematics,
Physics and Informatics, Comenius University, Bratislava

First published 2011
Number of pages 56
Printed in Slovakia by Bratia Sabovci, s..r.o., Pribinova 8183/170, 960 07 Zvolen

ISBN 978-80-89186-90-7

ISSEP 2011

3

ISSEP 2011
Informatics in Schools: Situation, Evolution and Perspectives

Conference website
www.issep2011.org

Conference Chair
Ivan Kalaš, Slovakia

International Programme Committee
Valentina Dagiene, Lithuania
David Ginat, Israel
Gerald Futschek, Austria
Juraj Hromkovič, Switzerland
Ivan Kalaš (chair), Slovakia
Peter Micheuz, Austria
Roland Mittermeir (co-chair), Austria
Sigrid Schubert, Germany
Maciej M. Sysło, Poland
Tom Verhoeff, The Netherlands

Printed with the kind support of the Austrian Ministery for Education, Arts and Culture

http://www.issep2011.org/

 ISSEP 2011

 4

ISSEP 2011
Informatics in Schools: Situation, Evolution and Perspectives

Local Organizing Committee
Ivan Kalaš
Daniela Bezáková
Andrea Hrušecká
Roman Hrušecký
Martina Kabátová

Katarína Kalašová
Zuzana Kubincová
Roman Riška
Mário Varga
Miroslav Wagner

Conference organized under the patronage
of the City Mayor of Bratislava Milan Ft§ļnik

Sponsors and Co-organizers of the Conference

ISSEP 2011

5

Contents
Foreword

Papers
Antonitsch, P.K.: On Competence-Orientation and Learning Informatics

Barbero, A., Demo, G.B.: The Art of Programming in a Technical Institute
after the Italian Secondary School Reform

Berki, J.: ICT in the Czech and Slovak National Curriculum

Bulin-Sokolova, E., Semenov, A., Vardanyan, V.: Informatics for Primary Education.
The case of Russian mathematical school

Csink, L., Farkas, K.: Genesis of Mathematical Curves by Turtle Geometry

Černochová, M.: Information Education in ICT teacher education at the Faculty
of Education in Prague

Detsikas, N., Alimisis, D.: Status and Trends in Educational Robotics Worldwide with Special
Consideration of Educational Experiences from Greek Schools

Fuchs, K.J., Schiller, T.: Thinking Informatically

Gyárfáš, F.: Let’s talk about Internet

Horner, C.: Minimally Invasive Education for Computer Literacy

Jašková, Ľ.: Exclusive Courses for Inclusive Education

Jochemczyk, W., Olędzka, K.: Supporting students’ development of computer science skills

Kiesmüller, U., Brinda, T.: Automated Online Identification of Learner Problem
Solving Strategies – A Validation Study

Linck, B., Schubert, S.: Logic programming in secondary education

Meißner, G.: Social competencies appraisals in CSE and in a computer science contest

Mesaroş, A.M., Diethelm, I.: Exploring Computer Science Teachers’ Subjective
Theories on Designing their Lessons

Mikolajová, K., Kabátová, M.: Discovering the Creativity in Informatics

Nikolova, N., Stefanova, E., Sendova, E.: Op Art or the Art of Object-Oriented Programming

Papancheva, R., Dimitrova, K.: The Digital Book in ICT – the New Tool into
Learning and Teaching Process in the Primary School

Papert, A., Silverman, B.: Art, Literature, and Turtles

Petrovič, P.: Ten Years of Creative Robotics Contests

Planinc, R., Wetzinger, E., Di Angelo, M.: Information Technology Education Add-on:
“Improving Media Literacy”

Reiter, A., Stöckl-Pexa, R., Sykora, P.: iPods in Primary School. A Pilot Project at the
Austrian “School in the Park”

Romeike, R.: Creativity in Computer Science Education – Eleven Findings

Rudchenko, T.: Implementation of the New Federal State Standard
of Primary Education: the First Year Results on the Example
of the Course “Mathematics and Informatics”

 ISSEP 2011

 6

Skiadelli, M.: The EasyLogo Paradigm

Smejkal, P., Di Angelo, M.: Informatics Classes in Austria’s Lower Secondary
Schools – a Survey

Vahrenhold, J.: On Misconceptions and Implementing ‘A Class Defines a Data Type’

Vardanyan, V., Rudchenko, T.: The Formation of ICT-competence in Primary
School in the New Federal State Standard of Primary Education

Verhoeff, T.: On Abstraction and Informatics

Weigend, M., Grabauskiene, V.: Metaphorical Geometry

Workshops
Andrejková, G., Galčík, F., Šnajder, Ľ.: Teaching and Learning Styles in Informatics

Grgurina, N.: Model Checking with Uppaal in a High School Computer Science Course

Kabátová, M., Mikolajová, K.: Fostering creativity through programming – Scratch workshop

Neuwirth, E.: Music structure and computer science concepts

Papert, A.: TurtleArt

Proulx, V.K.: Program by Design

Skiadelli, M.: Creating interactive board games with Easy Logo

ISSEP 2011

7

Foreword
We often hear people talking about how young Informatics or Computer Science is and how
quickly it develops. I believe that it is exactly this conference – already 5th in the row – which
shows something else: if there is anything that quickly develops in the field of Informatics, it is its
didactics or pedagogy1. That is the reason why I was tempted to title my foreword Transitions
(inspired by the Proceedings of Constructionism 20102) or even more ambitiously: Reaching
Maturity.

Finally I resisted those temptations because in our field of Informatics education we don’t have
so far sound and generally accepted criteria to verify what really is correct and mature in the
pedagogy of Informatics. Nevertheless, what I can observe with no uncertainty is the following.
Although the ISSEP meetings occur rather often – with an exotic frequency of approximately 18
months – every following one is interesting, inspiring, surprising, too far from boring... In a year
and a half so much happens in the Informatics education! What exactly do I mean close to
opening the 5th conference? Based on the papers accepted for Bratislava meeting I want to
mention four different aspects.

1. Obviously, we are systematically improving our thinking about the learning goals and
objectives of Informatics in school, about how to implement them and evaluate – we have
learned a lot about pedagogical reflection within our subject.

2. The interest in educational research in our field is ever growing and so is the number of the
doctoral students and smaller or bigger research projects. We are less guessing and more
observing and analyzing! We are adopting new research designs. In particular, I am
referring to increasing number of remarkable projects that apply new research strategy
named design based research, see e.g. (Cobb et al., 2003)3, (diSessa, 1991)4 or (diSessa
and Cobb, 2004)5. We are referring to a strategy (close to action research) in which
researchers – often supported by practitioners from the real settings – tend to create more
exact theories of learning, through designing, creating, implementing, observing and
iteratively redesigning theoretically justified pedagogical interventions into real classes.

3. We increasingly ponder about how school Informatics can better meet the needs of so
called 21st century learners, with new competencies requested, new priorities and values,
new forms of organizing of the teaching-learning processes, new relations between learners
and the teacher, with new roles of the teacher... To put it simple, we are thinking about the
role of Informatics in the modern school.

4. We are more and more thinking about when the school Informatics (whatever it is called)
should start. Based on the conference papers we can conclude that several countries have
started the implementation of Informatics into the lower secondary or even primary
education... or at least they are seriously thinking to do so. To certain extent we had
expected such transition and thus together with the Zurich 4th ISSEP Programme
Committee we agreed to redefine the ISSEP acronym from Informatics in Secondary

1
 with all the teensy-weensy divergences these words may have in different languages

2
 Clayson, J. E., Kalaš, I.: Constructionist approaches to creative learning, thinking and education: Lessons for the
21st century. Proc. of International Conference Constructionism 2010, Paris. Published by Comenius University,
Bratislava. ISBN 978-80-89186-65-5

3 Cobb, P., Confrey, J., diSessa, A., Lehrer, R. and Schaube, L.: Design Experiments in Education Research. The
Educational Researcher, 32 (1), pp. 9-13, 2003

4
 diSessa, A. A.: Local sciences: Viewing the design of human-computer systems as cognitive science. In J. M.

Carroll (Ed.): Designing Interaction: Psychology at the Human-Computer Interface. NY: Cambridge University Press,
pp. 162-202, 1991

5
 diSessa, A. A., Cobb, P.: Ontological innovation and the role of theory in design experiments. Journal of the

Learning Sciences, 13(1), pp. 77-103, 2004

 ISSEP 2011

 8

Schools: Evolution and Perspectives to Informatics in Schools: Situation, Evolution and
Perspectives, so that we open the door to all submissions which study Informatics in other
than (upper) secondary schools.

The last of these aspects or observations fills me with satisfaction and excitement: Finally, we
can think about school Informatics as a compact process going through all stages of education.
Doubtless to say, its curriculum and policy of implementation will keep changing frequently.
However, an opportunity for developing a complex Informatics education strategy has emerged
in some countries. This is a real challenge!

Eight months ago in our Call for papers for the 5th ISSEP conference we suggested that the
conference will be a... scientific probe into Informatics as a formative part of the general
education – in different forms and at different stages of school, i.e. in primary and secondary
education, in pre-service and in-service education of the Informatics teachers, as well as in
many supporting activities with clear links to Informatics.

We also declared that the conference will... reflect upon educational goals and objectives of
Informatics as a subject, its curricula and various teaching/learning paradigms, programming,
programming languages and pedagogy of programming, teaching/learning materials, various
forms of assessment, evaluation and testing, traditional and innovative educational research
designs, issues of safety and threats, Informatics’ contribution to new education and the
development of the 21st century competencies, competitions, displays, projects and other
supporting activities, new forms and formats of interactions, social, cultural and ethical issues
emerging from and within Informatics education, class management, Informatics and special
education needs, Informatics and integrating digital technologies in other subjects, Informatics
and the development of complex digital literacy and other related issues.

The answer and result to our call is what the readers have today in their hands – as a result of
rather demanding and challenging reviewing and editing process. We received unexpectedly
high number of submissions. Out of them the team of 39 reviewers accepted 20 for the LNCS
volume of Informatics in Schools published by Springer6 and 31 for this Proceeding published by
Comenius University. In total we accepted approximately 70% of all submissions. Besides that,
we also accepted 7 workshop proposals, which we believe will attract participant’s interest. Brief
annotations of the workshops are included in this Proceeding.

Finally, I want to thank all authors and presenters of the keynotes, all papers and workshops. I
want to thank all who have contributed in any way to the quality of ISSEP 2011, including the
paper reviewers who altogether produced more than 200 reviews. Due to their effort we have
managed to prepare high quality contents of the conference.

I also want to thank all members of the Programme Committee and Organizing Committee who
helped to make this event possible, all co-organizers and sponsors for supporting the
conference, our Faculty and University top management for unhesitating support and
encouragement.

I am happy for this conference and I am already looking forward for the next one in 2013, for the
next event labelled by increasingly recognized logo of ISSEP. If I managed to learn a lot while
preparing and implementing ISSEP 2011, I hope I will learn even more at ISSEP 2013.

Ivan Kalaš

6
 Kalaš, I., Mittermeir, R. T. (Eds.): Informatics in Schools. Contributing to 21st Century Education. LNCS 7013,

Springer, 2011. 235 p. ISBN 978-3-642-24721-7

On Competence-Orientation and Learning Informatics

Peter K. Antonitsch

Alpen-Adria University Klagenfurt
Institute of Informatics Systems, Informatics Didactics

Universitätsstr. 65 – 67
Klagenfurt/AUSTRIA

Peter.Antonitsch@uni-klu.ac.at

Abstract. “Competence” has become a catchphrase of modern pedagogy and
didactics. This article relates competence-orientation to known concepts like
outcomes-based education or self-organized learning, and points at tools like
competence-matrices or task-checklists designed to support competence-
oriented learning. Furthermore, it sketches an attempt of the author to introduce
these tools into Informatics lessons at upper secondary level, describes first
experiences and outlines questions that still have to be answered.

Key Words: Competence-orientation, personalization, programming

1 Competence-Orientation and Personalization

Competence denotes a combination of knowledge and the ability to apply that
knowledge in order to solve problems or to react in an appropriate way [1].
Competence-based curricula do not (only) point at what the learners should learn in
school but tell what learners must be able to do at the end of a certain learning
process. For instance, the forthcoming curricula for learning “Informatics” at Austrian
engineering schools (upper secondary level, age 15 to 19) read like: “The students can
install and configure operating systems.” (from the area of competence labeled
“Basics of Electronic Data Processing”) or: “The students can develop algorithms and
describe the necessary steps of computation in a systematic way.” (from the area of
competence labeled “Programming”).

Competence-based curricula resemble the framework of outcomes-based
education. This is “an approach to planning, delivering and evaluating instruction that
requires [...] teachers and students to focus their attention and efforts on the desired
results of education—results that are expressed in terms of individual student
learning.” [2]. Competence-orientation supplements competence-based curricula with
a methodical framework resembling the concepts of self organized learning (see [3],
for instance).: Learners should be enabled to follow an individual learning path, thus
transforming predefined common and compulsory learning goals into individual
learning goals. [4]. This is called personalized learning or – short – personalization.

mailto:Peter.Antonitsch@uni-klu.ac.at

Obviously, competence-orientation and personalization of learning processes go
together

2 Competence-Orientation in Action

2.1 A general framework

When looking for ways how to apply competence-orientation to learning processes
we can learn from schools that have tried alternative concepts for quite a time and
provide tools that are needed to support competence-oriented learning ([5], [6]).

With competence-orientation, learners are supposed to plan their own learning
process. Therefore, they need information about the learning objectives, about ways
to reach their goals and about means to test whether they have succeeded or not, or
rather: to what extent they have succeeded to reach the goals. While advance
organizers provide a survey of the learning goals, a competence-matrix gives more
detailed information by pairing goals/competences and different levels of competence
- acquisition: Even if a learner can not reach the highest level of a specific
competence, he/she should be enabled to acquire that competence to a certain extent:

Fig. 1. Example competence-matrix (snippet) for the subject matter Informatics (age 11 to 14):
The rows name topics of interest/learning objectives, while the columns specify different levels
of competence for a certain topic. Each “cell” contains a description what I (!) must be able to
do to prove that (level of) competence (source: [7]). The circles visualize a learner’s individual
competence profile.

Furthermore, a competence matrix can be used by the learner to mark the levels of
the listed competences he or she has already reached. This results in an individual
competence profile helping to decide on further learning steps to improve the
learner’s competences.

On Competence-Orientation and Learning Informatics 3

Learning tasks are the primary means to acquire competences. Combining a
checklist of learning tasks with the competence-matrix guides the learners to choose
tasks appropriate to reach a certain level of competence and to test whether they
succeeded as well.

A task shall be called learning task, if it points at a gap between an actual situation
and a different situation desired by the learner. If, furthermore, a learning task gives
an idea how to fill that gap, it becomes a task learners are willing to accept and able to
solve. Solving a new task (i.e. “filling the gap”) due to prior knowledge or skills is
commonly called “learning” [8]. Therefore, to support systematic acquisition of
competence, learning tasks have to provide a situation that motivates to apply
knowledge and/or skills [9].

2.2 A Personal Approach: The Tool, Sub-Competences and Tasks

The author decided to switch to competence-orientation in autumn 2010 with two
first-year Informatics courses at an Austrian engineering school. Each course con-
sisted of 17 learners at the age from 15 to 16, and was based on the old, topic-oriented
curriculum1, which lists the learning objectives “basic knowledge about informatics
systems” (focusing on hardware and operating systems,) “standard-software”
(focusing on text-processing and spreadsheets), and “principles of programming”
(focusing on solving problems with simple algorithms and coding of simple
algorithms).

To keep things simple at first, the author restricted competence-orientation to
“principles of programming” and defined the corresponding learning objective: “The
learners can solve meaningful tasks by utilizing control- and data-structures that are
available within the specific programming environment in use.”, which instantly
raised two questions: “Which programming environment is the best learning
environment?”, and, as learning to program is considered “notoriously difficult” [10]:
“How can that big learning objective be split into competences of different levels?“

Prior experiences with microworld-environments [11, 12], made “Greenfoot” the
author’s favourite software2. But due to what might be called “school-culture” the
software that had to be used was C# Express, which, in its pure form, is no learning
environment providing “situations that motivate to apply knowledge or skills” for
programming novices. But C# allows for project-templates that can be used to prepare
programming-scenarios with a predefined set of methods inside the “big C#-world”.
This feature was used by the author to create a turtle-like scenario called “graphic-
robot” with basic movement-commands like »forward(distance)« or »turn(angle)« to
start programming with a visual representation of the coded solution. A second

1 The new, competence-oriented curriculum that was mendioned before will come into effect in
autumn 2011.

2 With Greenfoot, the immediate feedback due to the visible “reaction” of the programmed
objects triggers personalized learning processes and the option to use different “scenarios”
helps to provide tasls that are meaningful inside that certain scenario. Furthermore, the need
to write textual code from the beginning necessitates to build mental models of the used
“programming structures” [12].

scenario provided simplified graphical user interfaces for input and output to pay
tribute to the “simple algorithms”. The third scenario was demanded by the learners,
who, when programming the “graphic robot”, said those tasks were “nice” but that it
would be even more fun programming a “real robot”. This gave birth to the idea to
use a Java-environment to program Lego-Mindstorms robots at the end of the course.

Fig. 2. C# learning environments (“scenarios): “Graphic robot” (left) and “Simple GUI” (right)

The choice of these three learning environments influenced the definition of six
competences, dealing with:

coding programs to navigate the graphic robot inside the “graphic-robot scenario”:

− I can navigate the graphic robot by means of loops and methods.
− I can navigate the graphic robot by means of variables, loops and methods.
− I can navigate the graphic robot by means of branching, of methods with and

without return values, of variables and loops.

writing, reading and understanding code of programs that input, process and output
data inside the “graphical user interface-scenario”.

− I can input and output data, code simple calculations with command-sequences and
branches and use flowcharts as another representation of programs.

− I can structure programs by using loops or branches to fulfill a condition and by
splitting the code into several methods.

utilizing classes and objects inside the “graphical user interface-scenario” or the
“Mindstorms robot-scenario”.

− I can explain the terms “class” and “object”, create “object-variables” and I am
well aware when I use methods of objects or classes. Furthermore, I can utilize
means of help to find out which methods are provided by a specific class.

Each of these competences has four competence levels that were presented to the
learners in a table containing links to corresponding tasks as well (see Fig. 3).

To prevent a learner from falling too far behind when he or she chooses to be
satisfied by reaching the lowest competence-level D, competences referring to the
same scenario partly build upon each other: For instance, tasks corresponding to
competence-level D of the second competence resemble tasks corresponding to
competence-level C or B of the first sub competence. Therefore, when learners do not

On Competence-Orientation and Learning Informatics 5

go beyond a low competence-level of an “early” competence, they will most likely
get stuck at the following competence and are supposed to go back (or seek the help
of their classmates).

Fig. 3. Above: The 2nd competence with its four competence-levels labeled D to A, A denoting
the highest (sub-) competence-level. The last row contains links to tasks on the corresponding
2nd task-sheet.
Below: An example-task from task-sheet 2.

This “iterative structure” inside a certain scenario is augmented by another
structure spanning the three scenarios:

When solving tasks inside the “graphic-robot scenario”, the learner acquires
competences to deal with loops, with methods, with variables and with branches.

Switching to the “GUI-scenario” restarts this learning process: The learner acquires
(or applies) (competences to deal with loops, with methods, with variables and with
branches, extended by the possibility to input and output data and by the learner’s
awareness of classes and objects.

At last, when programming Mindstorms-robots, the learner acquires (or applies)
competences to deal with loops, with methods, with variables and with branches, and
with classes and objects that are omnipresent inside the Java-Mindstorms
programming environment.

Within this “spiral structure”, basic competences can be acquired throughout the
entire learning process. It allows learners to “join in” in a later round of competence
acquisition if he “stepped out” in one of the rounds before. For instance, this was very
valuable for those learners, who had no idea what the words “loop” or “branches”
stand for before they started programming the graphic robot, but could use these
structures of control when they continued programming within the “GUI-scenario”.

2.3 A Personal Approach: Assessment

The decision for four competence-levels had a practical reason. As the learner’s
competence has to be transformed into a single grade for the term’s report (and
Austria’s school-system provides five grades, 1 = “very good”, 5 = “not enough”), the
competence levels were designed to correspond to the four “positive” grades 1 to 4: If
a learner acquires competences of what level ever, he or she of course has earned a
positive grade. Furthermore, if a learner does never solve tasks beyond competence-
level C, he or she can self-estimate the final grade, which, most likely, will be “3”.
This possibility of self-estimation was meant to help the learners defining their
individual learning goals.

Final grading was on one hand based on the teacher’s monitoring of the learners
work in class On the other hand, the learners were encouraged to hand in their
solutions to the tasks to document the acquisition of a certain competence level.
Furthermore, at the end of the practising period for a certain competence, the learners
had to pass short written exams consisting of eight tasks, two from each competence-
level. The “examination-tasks” were rather similar to the task-sheet-tasks. In these
short exams, again, the learners had to self-estimate their knowledge and skills by
reading all of the tasks first, choosing the competence-level they considered to be
appropriate, and finally solving only the two tasks of the chosen competence level.

Of course, false self-estimation within such a competence-oriented examination
scheme might cause confusion: What to do, if a learner chooses a high competence-
level, say: B, and fails to solve (parts of) the tasks? Grading the performance with “2”
would not be fair, but how to decide and to argue whether the grade should be “3”,
“4” or “5”?

Fig. 4. Competence-level and distribution of points with the competence-oriented examination
scheme. The numbers at the centre give the maximum amount of points for the two tasks of a
certain competence-level. To the right, the corresponding grades (from “1” to “5”) are
displayed.

To avoid this from the beginning, each task was valued with a certain amount of
points: Tasks at competence-level D valued 3 points each, those at competence level

On Competence-Orientation and Learning Informatics 7

C 5 points each, at competence level B 7 points each, and, finally, those at
competence level A valued 9 points each. Thus, partial solutions could be taken into
account as well. Fig. 4 shows how the total of points reached by a learner corresponds
to the grades.

It should be noticed with this grading scheme, that only 0 points qualify for a
negative grade (which did not prevent some of the learners to earn a negative grade
now and then), and that choosing a certain competence-level can result in a better
grade than expected. For instance, when choosing competence-level C, the learner
estimates the grade “3” to be appropriate. But, if the solutions to both of the tasks are
correct, the grade will be “2”.

This strategy of mapping points to grades should meet self-underestimation of the
learners, which proved to be as much a problem as overestimation. Therefore, only
three of the exams were competence-oriented, while two exams had a traditional
form, where the exam-sheets contained five tasks across all competence levels. In
these exams, the learners were free to choose any task and any number of tasks to
solve, but had to reach at least 8 points (out of 56) to earn a positive grade.

2.4 A Personal Approach: Some Reflections and (First) Experiences

Although things start to change, in most Austrian state-schools it is still common to
teach and learn in “traditional mode” rather than to learn and teach in “competence-
oriented and personalized mode”: The teacher knows the learning goals and directs
the learning paths of the learners, who are used to follow (more or less). Therefore,
the described pattern to move towards competence-oriented learning was a new field
of experience for the teacher/author and for the learners as well.

Being driven by the teacher’s attitude of “Stop musing about competence-
orientation, try it.”, the described “competence-oriented pattern” was not planned
down to the last detail from the beginning. For the teacher, it was a process of
incremental adaption and/or step-by-step development of exam-sheets, task-sheets,
competence-tables and working environments, guided by the knowledge about tried-
out pedagogical tools. On one hand, this kind of workflow allowed to consider the
actual learning situations in class, on the other hand it made it impossible to provide a
complete competence-matrix right at the start of the courses. The learners had to work
with consecutive one-dimensional tables for single competences instead.

Therefore, the described pattern of tools didn’t create a “pure” competence-
oriented learning environment but rather defined a “hybrid” approach:
− Although the learners could choose from a wide range of tasks,
− although the learners were given information about the levels of competence that

might be acquired by solving the provided tasks,
− and although, therefore, the learners could choose a personalized learning path

when attempting to acquire a (certain level of) competence,
− it was the teacher and the teacher alone, who had a general view of the learning

goals from the start.
In other words: The teacher still directed the learning paths of the learners at a bigger
scale.

In spite of being imperfect from the viewpoint of competence-orientation, this
setting met the needs of the learners. For them, competence-orientation in the subject-
matter Informatics during their first year at an engineering school was a twofold
challenge: According to their foregoing experiences, Informatics consisted of text
processing, working with presentation software and doing some calculations with
spreadsheet programs. Only few of the learners had already done some coding (with
HTML) or some programming (with Scratch). Furthermore, they were used to very
detailed task-descriptions like “Change the format of the first paragraph to right
alignment and select double line spacing.” Thus, most of the learners were new to
programming AND to working autonomously, that is deciding for a task and
developing a plan to solve a task by themselves.

The narrow borders of the “hybrid” competence-oriented traditional setting
provided familiarity for most of the learners, who simply focused on the actual
competence and started to solve the tasks, either alone or in pairs. This, in turn,
allowed the teacher to coach the individual learning-processes by giving individual
feedback to (almost) all of the learners within one learning unit, by paying special
attention to those who had problems to advance on their learning-path, and by
advising the learners to profit from each others competences.

Above all, introducing aspects of competence-orientation seems to have resulted in
more learning-specific interactions within the learning group, but having little effect
on the learners’ learning habits: For example, in spite of different levels of learners’
speed and motivation, all of them started by solving task number one and proceeded
by following the task-order provided by the task-sheet. Even those learners, who did
well with self-estimation and were rather fast at writing programs, hardly skipped
tasks, even if the tasks were quite similar to those solved just a minute ago. Some of
these learners, who spent some time for programming at home, managed to solve all
tasks at all competence-levels for a certain competence, the others usually got stuck at
competence-level C or B, simply because they ran out of time. On the other hand,
those learners, who worked on their competences but worked rather slow, did not
want to skip tasks, either, even if they were not able to solve a specific task.
Furthermore, a few learners “misunderstood” the freedom of choice and dawdled
away after having solved one (and in most cases: the easiest) task. To come across
this attitude, the teacher defined “milestones” like: “The tasks corresponding to
competence-level C have to be solved until next week’s lesson”, which provided the
impetus to start working for some of the few.

Competence-orientation, as it was meant by the teacher, took effect only with the
written exams, where the learners had to choose a level of competence. Due to the
learners’ prior experience with similar tasks at a specific level of competence and/or
the restriction to only two tasks led to better grades than with written exams in
“traditional mode”3. Astonishing enough, the learners preferred the latter kind of
exams, though. Obviously, learning habits that have been trained for eight years are
hard to overcome.

3 Having become used to the competence-oriented mode of written exams, most of the learnes
had the “strategy” to choose competence level „C“. In the learners’ own words, competence-
level “C” sounded “easier” than level “B” or “A”, but still offered the chance to earn a “2”.

On Competence-Orientation and Learning Informatics 9

3 Further Work

Most resources about competence-orientation discuss learning environments for
learners at lower secondary level (ages 11 to 14), where competence-orientation
concerns all subject matters and general competences are given prominence within the
competence matrices. The hybrid approach sketched above was a first step to
introduce competence orientation into Informatics at the learners’ age of 15,
providing a valuable stock of experience, competence-definitions and tasks to build
on.

Starting with autumn 2011, the new curriculum will take effect. Thus, next years’
approach to competence-orientation should overcome (at least some of) the
shortcomings of this first attempt by expanding the concept of competence-orientation
to the (other) topics named in the curriculum, “Informatics basics” and “standard-
software”4, and by providing competence-matrices at the beginning of the learning-
process. With the latter, much care has to be taken to choose proper words within the
description of the competences, ensuring that learners can understand what they are
about to learn. Furthermore, it seems necessary to find answers to questions like:
“Can self-estimation of a learner’s competence become a self-fulfilling prophecy?”
and to rethink the “culture of tasks”:
− Is it possible to find a classification of tasks, which helps to decide whether a task

is easy or hard FOR LEARNERS, depending on their prior knowledge and skills?
− How can tasks (and the definition of the corresponding competence) be redesigned

to foster cooperative learning?

All of that calls for teachers’ cooperation and leads to another question: How can,
at a larger scale, teachers be motivated to develop a culture of competence-
orientation, especially with a subject-matter like Informatics with no centralized final
exams?

References

1. Schwedes H.: Wie Kinder Lernen. http://gaebler.info/schwedes/lernen.pdf (2005)
2. Killen, R.: Outcomes-based education: Principles and possibilities. Unpublished

manuscript, University of Newcastle, Faculty of Education (2000),
http://drjj.uitm.edu.my/DRJJ/CONFERENCE/UPSI/OBEKillen.pdf

3. http://bildungsserver.berlin-brandenburg.de/sol_allgemein.html
4. Müller A.: Dem Wissen auf der Spur. Institut Beatenberg (2003), http://www.

institut-beatenberg.ch/xs_daten/Materialien/Artikel/artikel_lernjobs.pdf
5. Institut Beatenberg, http://www.institut-beatenberg.ch/
6. Max Brauer Schule Hamburg,

http://www.maxbrauerschule.de/mbs/downloads/2008_neue_mbs_bsp.pdf

4 As these topics form a major part of the European Computer Driving Licence, it seems
reasonable to use (and alter) competence-definitions that can be found in the ECDL syllabus.

http://gaebler.info/schwedes/lernen.pdf
http://drjj.uitm.edu.my/DRJJ/CONFERENCE/UPSI/OBEKillen.pdf
http://bildungsserver.berlin-brandenburg.de/sol_allgemein.html
http://www.institut-beatenberg.ch/
http://www.maxbrauerschule.de/mbs/downloads/2008_neue_mbs_bsp.pdf

7. http://www.institut-beatenberg.ch/xs_daten/Materialien/kompetenzraster.pdf
8. Girmes R.: [Sich] Aufgaben stellen. Professionalisierung von Bildung und

Unterricht. Kallmeyer, Seelze (2004)
9. Lersch R.: Kompetenzfördernd unterrichten. 22 Schritte von der Theorie zur

Praxis. In: PÄDAGOGIK Heft 12/2007. http://www.uni-marburg.de/zfl/
ueber_uns/artikel/artikel-lernsch-2007-KompetenzfArdernder_Unterricht

10.Dehnadi S., Bornat R.: The Camel Has two Humps (2006)
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

11.Antonitsch P.: Standard Software as Microworld? In: Mittermeir R. (ed.): From
Computer Literacy to Informatics Fundamentals. Lecture Notes in Computer
Science Vol. 3422, Springer, Berlin-Heidelberg (2005)

12.Antonitsch P.: Erfahrungen zur Individualisierung im Programmierunterricht. In:
G. Brandhofer et al. (eds.): 25 Jahre Schulinformatik in Österreich. Österreichische
Computer Gesellschaft, Wien (2010)

All links have been accessed on Apr. 26th, 2011

http://www.institut-beatenberg.ch/xs_daten/Materialien/kompetenzraster.pdf
http://www.uni-marburg.de/zfl/
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

 The Art of Programming in a Technical Institute

after the Italian Secondary School Reform

Alberto Barbero
1
, G. Barbara Demo2

1 Istituto Tecnico Superiore "G.Vallauri"

via San Michele 68, Fossano (CN) – Italy
barbero@vallauri.edu

2 Dip. Informatica, University of Torino

c.so Svizzera 185 - 10149 Torino – Italy
barbara@di.unito.it

Abstract. The Italian Secondary School Reform became effective with the

2010-2011 school year. It establishes guidelines for the different subjects but

leaves large autonomy and responsibility for fixing concrete curricula to

teachers. This autonomy is crucial for Informatics because it does not have

uniform teaching models as do Mathematics and the other classical disciplines.

During the discussions about the Reform, Computer Science faculties and

researchers from Italian universities developed the “Manifesto of Informatics in

Secondary Schools” which was issued in May, 2010. Hints from the Manifesto

along with teachers’ actual experiences are meant to help solidify Reform

guidelines and define appropriate school curricula. As a contribution to these

discussions, we present here the activities under development in one technical

secondary school for first year students, i.e. those about fourteen years old.

Integrated with the planning of the second year, 2011/2012, this experience is

proposed both as a reference activity for technical secondary schools and as a

component of the Informatics course introduced by the Reform in the Applied

Science secondary schools in Italy.

Keywords: Information Science, Manifesto for Informatics in Secondary

Schools, Scratch, Programming, Computational Thinking.

1 Introduction

2010-2011 has been the first year after the reform for all types of Italian Secondary

Schools. During the reform development, discussions concerning Informatics in

schools have been frequent. Newspaper articles appeared claiming that “it is a bizarre

idea to have Informatics as a separate discipline with dedicated hours in secondary

schools because, although computers are all around us, we do not think that

everybody must learn how to program them in some formal language. Indeed, we do

not need to be an engineer in order to know how to drive a car”.

Computer Science Engineers with Information Science faculties and researchers

contributed to the discussions about how to reform Informatics in schools. Their

common answer is the “Manifesto for Informatics in secondary school”, outlined in

the second section of this paper. Its original version is still published in the Italian

language only[1]. The Manifesto points out that in today’s society, computer science

mailto:barbero@vallauri.edu
mailto:barbara@di.unito.it

is considered from three quite different points of view. One is the pragmatic or

operational perspective that considers Informatics to be a set of hardware and

software systems. The second is the technological perspective shared by people that

conceive Informatics as a set of technologies to be used to implement software

systems and applicative packages. The third is the cultural perspective, viewing

Informatics as a scientific discipline founding computer technology.

Meant as a contribution to the reform, discussions concerning the Manifesto

pointed out that in the Italian schools, Informatics is almost only present in the last

years of technical schools as learning technologies to implement software. In the large

majority of other schools, Informatics is seen as using Office-type suites or

specialized software such as the well known GeoGebra or other such systems. Thus,

according to the Manifesto community, in most Italian schools the operational and the

technological aspects of Informatics are present while activities contemplating

Informatics as a scientific discipline are only seen quite occasionally.

With the Reform, computer science related subjects are present in both technical

schools and in Applied Sciences secondary schools starting in the first year. Also, in

the classical, scientific and pedagogical secondary schools, teachers must cover

“Computer science elements” during Mathematics lectures. Thus there is now the

need to have new approaches of teaching computer science.

For every subject, the Reform establishes guidelines for each school year in every

school type, leaving to teachers and individual schools the job of defining their

teaching methods. This provides an autonomy and responsibility level higher than

previous education curricula allowed. This autonomy is most critical for Computer

science related disciplines because there is no tradition concerning the contents and

teaching methodologies teachers may refer to or feel obligated to use. Moreover, for

historical reasons, Informatics can be taught by teachers having quite different

backgrounds: teachers can be electrical or mechanical engineers, physicists,

mathematicians or have other specializations and consequently, in several cases, they

have only a pragmatic experience with Informatics.

Fortunately, taking advantage of the greater autonomy provided by the Reform,

Informatics teachers in a number of secondary schools, some together with a

university computer science department, reconsidered their approaches to teaching

Informatics during the 2010/2011 school year, and aimed to make their teaching

activities comply with the Manifesto’s intent. Ongoing school experiences are being

monitored jointly by secondary school and university computer scientists and will be

reviewed for possible best practices for use by other schools.

One of these experiences is addressed in the third section of this paper. It concerns

current year work in a first class of a technical school, i.e. with students about

fourteen years old, and some of the activities planned for the next 2011/2012 year.

Before the reform, in secondary technical schools, programming was generally

considered too difficult for 14-15 years old students and only introduced from the

third year, using Visual Basic, C, C++ and Java languages. In the experience here

presented, teachers decided to achieve first year guideline competencies through

problem solving and programming. Indeed, from their previous teaching experience

they consider it to be most important to avoid losing the attention of students entering

a technical school. Thus, they choose programming activities as most motivating for

these students. A critical point was then finding a suitable programming language and

related Integrated Development Environment (IDE), not only to introduce coding but

also to introduce students to algorithms and programming principles. The Scratch

language and its IDE developed by Resnick’s group at MIT [2] were chosen for the

reasons given in the third section with the outline of the introductory activities.

The fourth section addresses Scratch experiences as of the end of the current year

and plans for the next (second) year. The experience around the game “Guess what

number is between m and n” allows the class to study the binary search algorithm and

introduces students to the properties of complexity, generality and correctness related

to algorithms and programs. In the second year, the use of Arduino with a Scratch

interface is planned. Also, different interfaces and programming languages are being

considered based on the experiences that teachers are exchanging among themselves

so as to improve activities for next year’s classes.

2 The Manifesto for Informatics in Secondary Schools

In Italy there are three main national associations of computer scientists: the

National Consortium for Informatics Inter-universities (CINI), the Group of

Informatics Engineers (GII) and the Group of Researchers in Information Science

from Italian Universities (GRIN). When the Education Ministry was developing the

Secondary School Reform these associations contributed to the discussions in

different ways. One result was the “Manifesto for Informatics in Secondary Schools”

issued at the beginning of May, 2010. The Reform was effective for schools in

September, 2010.

The Manifesto points out that, in Italian schools, Informatics is almost always

present as a learning technology to implement some software in technical schools

such as Office and Open Office, GeoGebra or other similar software for use in

learning Mathematics or other subjects.

The Manifesto notes that “Informatics is becoming the kernel of our modern world

both because it is needed for the normal development of our everyday duties and

because its development shapes and directs the advancement of our whole society.

Nowadays, in all areas of human activities we can find the influences of digital

discoveries and achievements. Indeed, the computer is no more used for the

traditional scientific calculus only, but it is also used in all areas of industrial

production, medicine, publishing and communication to name only some of its

applications. Two billion people have at least one contact on the net each day. We

have around us products full of hundreds of millions of billions (no typos here) of

transistors– elementary hardware components supporting information technology – in

our cars, in domestic appliances, inside the gas pumps, in our videogames, and they

are half of the financial value of the products. Hundreds of billions of software

instructions, expressions of human intelligences, give life to these components and,

through them, to all processes peculiar to our modern society.

 Computer Science or Informatics has three distinct meanings; related, but

quite different. A person can have a:

1. a pragmatic conception of Informatics and see it merely as a set of

hardware and software systems;

2. a technological conception and perceive Informatics as a set of

technological tools to be used to build devices and to implement system

and applicative packages;

3. a cultural conception and perceive Informatics as a scientific discipline,

thus making possible information and technology science.

Most people hold the first view of Informatics: knowing computer science

means knowing which digital devices to buy and how to use software

packages. For technicians, knowing Informatics means knowing how to

develop software systems”.

 The Informatics discipline in schools is a largely debated question. Likely there

are different answers depending on the point of view one looks at computer science:

the pragmatic, technological and cultural conceptions all inspire different ways of

dealing with Informatics in schools. Different types of secondary schools can

plausibly have different aims in making their students competent in Informatics and

consequently they may decide to stress one of the above aspects over the others. For

the conception of Informatics as a science we should mainly address its

epistemological aspects and focus on its connections with Mathematics, in particular

Logics, Philosophy and History. This is particularly relevant to Italian classical,

scientific and pedagogical secondary schools. Nevertheless, it should be an aspect of

digital literacy possessed in some form by everyone at the end of any secondary

school. Unfortunately, this aspect is missing in (almost) all of our secondary schools.

3 Scratch activities in the first year of Reform

It should be discussed what “digital natives” means in 2011 and whether Italian

fourteen or fifteen years old students are digital natives or not [3]. In our schools, due

to the very different levels of familiarity with computers and computer science, the

guidelines for the first year in technical schools includes the European Computer

Driving License (ECDL) syllabus. Most of the schools offer to their students the

ECDL certification to ensure a basic common level of Informatics competencies [4].

As we said in the introductory section, teachers have the autonomy of defining a

complete curriculum for their class. At the Vallauri Technical Institute of Fossano

(Cuneo), Italy, teachers have decided to move to the first year part of the

competencies that were previously part of the third year guidelines in order to

introduce students to algorithms and programming. They aimed at gaining the interest

of first year students by finding computer science motivating activities and at the

same time allowing students to acquire skills established in the guidelines and also

needed to pass the ECDL certification. They decided to look for a programming

language different from those normally used in the last years of secondary schools

and in universities which are too difficult and require too much time to obtain

motivating results.

Scratch is a visual programming language developed by Mitchell Resnick and his

Lifelong Kindergarten Group of the M.I.T. MediaLab in Boston. Scratch and its

visual environment suited the curriculum teachers were thinking because of the

following reasons:

 Scratch is easier to use for young people beginning a technical secondary

school with no prior experience of programming. For example, it forces

syntactically correct programming;

 it was specifically created to introduce basic concepts of problem solving and

programming to very young students

 it is motivating for young students because it offers an attractive environment

 it is sharable among all secondary school types and is flexible enough so that

each school can adapt it to its own needs while still maintaining a common

ground of experience;

 it is suitable for teachers and older students, even those in non-technical

schools such as classical or scientific secondary schools (called “liceo” in

Italy);

 it forces structured programming; and

 it provides an open environment.

At a first look, Scratch appears to be a play-tool, however under closer

examination, it proves to cultivate logic and reasoning.

From the outset it is possible to use variables, lists of values, primitives for

selection and iteration. In Scratch, programmers can easily implement animations,

simultaneously execute different processes, make them interact and use events.

Programming is done using a visual block editor. The blocks have jigsaw puzzle

shapes in order to direct which language components can be put together as shown in

figure 1. Each block has a primitive instruction written on it. Blocks have different

colors and shapes depending on their function. Blocks are connected by clicking on

the icon and dragging the chosen block to its proper position, forming a command.

Scratch is open source and freely downloadable (http://scratch.mit.edu). It is stable

and powerful. Every day, students find some new function to use. On the Scratch site,

students can find free manuals, examples, forums, instructional videos, and more than

1,623,937 projects under the Creative Commons license (accessed 3
rd

 March 2011).

They can also upload their own project to share with other users all over the world.

In teachers’ current plans, formalisms and more difficult reasoning projects are

being left to future years. As an example, properties of complexity and generality of

algorithms are only introduced in year one as are properties for loops (such as

preconditions, post-conditions and invariants). A structured development of

algorithms to solve problems is necessary when using Scratch because of the shape of

the puzzled statements used in the language.

For the sake of space here, we have summarized only three activities which had

important roles during their first year of experience: the “cat – think of a number”

game which was worked on during both Informatics and Mathematics classes; a

“calculator” for basic arithmetic operations; and the last activity assigned during this

2010/2011 school year, the “high-low, guess-a-number” game.

Programming activities started with the “think-of-a-number” game that students

sometimes play in school. We had the students develop a program in which a cat asks

the user sitting in front of the screen to do actions such as: “think of a number

between 1 and 9”, “now add 1”, “multiply the result by 3”, “subtract the number you

thought of at the beginning”, “again subtract 2”. At this point the cat says “Tell me

the number you finished with”. Once the user gives his or her answer the cat provides

the original number that the user thought! In figure 1 we show the commands the cat

gives during the game. They are simply a sequence of “think of” instructions followed

by the number of seconds before the next command is given. In addition, input and

output communication commands are used. This experience lead to discussions and

activities with Mathematics teachers who analyzed the game as an exercise of one (or

two) variable(s) equation(s).

Fig. 1. Think a number game.

After the students discussed the mathematical aspects of the game, each group of

students was asked to invent their own version. Then, after the different games were

coded, they were integrated into a unique program in which, at the beginning, a

random choice defined for each run which game the cat proposed to the user.

The second activity was to build a calculator for basic arithmetic operations, as

shown in figure 2. Working on first and second projects students discovered simple

variables, input/output management and events.

Fig. 2. Calculator.

Teachers supervised the programming experiences and asked students to write

reports showing the different solutions they have developed. During the process,

students performed tasks meaningful and enjoyable to them while achieving most of

the competences required by their grade guidelines. They are also better prepared to

pass ECDL- like tests that, as noted above, are often offered at the end of the second

year in technical secondary schools.

4 Revisiting Scratch experience without and with Arduino

The final activity, the “high-low-guess-a-number” game involves a cat and a dog.

The dog has to find out by trial and error the number the cat has thought (within a

given range).

Fig. 3. High-low-guess-a-number.

The objective for the students is to try to minimize the number of trials.

Obviously, the best strategy would be to implement a binary search type algorithm.

Each group of students works on its own game version. The students then compare

different solutions to the same problem and learn to understand that algorithms and

programs have a property called “time complexity”. While programming this game,

partly shown in figure 3, we introduce the iteration via the repeat until primitive, the

possibility of communications via messages between the cat and the dog, and the

binary search algorithm.

Teachers are currently defining the plan for next year’s activities. It will consist of

refining the experiences carried out during the first year and defining new activities

for the second year students. For the second year, both App Inventor for Android, part

of Google Labs [5], and the Arduino board are being considered for use [6]. By using

App Inventor, students write applications for their smart phones. This is extremely

motivating for them. Arduino is an open-source platform which is easy to enrich with

sensors and actuators suitable for the interactive environments in which we want to

use it. Our interest in Arduino is because we aim to provide a concrete example of

how a program can interact with the real world. A contribution specifical to the

relationships between Informatics and Robotics in Secondary Schools is in [7].

We are considering programming Arduino using the S4A (Scratch for Arduino)

environment developed by Citilab in Barcelona (Spain). S4A is a Scratch

modification supporting simple programming of Arduino [8]. Our current plans are to

also introduce the language “Processing” for Arduino during the third year because it

will not only make students work with a third programming language but it will also

change from a visual to a textual programming type within an already known

framework. Processing is a C-like language used to write programs using Arduino to

exchange data or similar.

The planning of the complete curriculum for the second year was finished by the

end of May, 2011. It also contained the design and programming of web sites with an

emphasis on making students understand the difference between form and content.

5 Conclusions

We have presented a preliminary contribution for introducing Informatics in

secondary schools during the 2010/2011 first year of the Secondary School Reform in

Italy. By beginning these new experiences in technical schools in which computer

science is already present, we try to establish educational objectives and activities

which can be used to introduce Informatics to all types of secondary schools, even

those where Informatics has not been previously present. This experience is proposed

to be a curriculum for vocational secondary schools as well and, with science history

integrations, for Liceo.

When asked which courses they are having during first two years for a Computer

Science degree, (too) many students name the languages they are using to code

programs and, for example, say “Java” rather than the actual name Programming

Principles of this course. The aim of our computer science activities in secondary

schools is to improve our students’ understanding of abstract properties of

programming beyond that of prior students. Obviously our aim in secondary schools

is not to educate all students to become good programmers but rather to introduce all

future e-citizen to the computational way of thinking that many researchers consider

essential for our next generations. Jeannette Wing, the President's Professor of

Computer Science and head of the Computer Science Department at Carnegie Mellon,

during her presentation in the Computer Science Distinguished Lecture Series at

Carnegie Mellon in Qatar, said: "Computational thinking is a fundamental skill used

by everyone in the world, and should be incorporated into educational programs along

with reading, writing and arithmetic to grow every child's analytical ability.

Computational thinking is a way of solving problems, designing systems, and

understanding human behavior that draws on concepts fundamental to computer

science. To flourish in today's world, computational thinking has to be a fundamental

part of the way people think and understand the world” [9].

Our problem solving and programming activities have been inspired by many

researchers that propose experiences motivating students and introducing them to

basic topics of computer science. We name here the most relevant of these inspiring

colleagues: Mark Guzdial and Barbara Ericson for their Context and Media

Computation proposals for a motivating yet systematic introduction to CS of

freshmen in all subjects but Informatics at Georgia Tech [10]. Our next year’s work

also considers adopting suggestions from Context Computation planning activities for

the third year in our secondary school.

The books by Mariano Tomatis on “Mathematics and Informatics for crimes” are

also worthy of attention in planning our next activities because this approach is

gaining large attention in presentations to Informatics and Mathematics students at

several universities and secondary schools [11].

References

1. Manifesto sull’Informatica nella riforma della scuola superiore, http://www.grin-

informatica.it

2. Resnick, M. et all., Scratch: Programming for All, CACM, Vol. 52, No. 11, pp 60-67,

November 2009

3. Prensky, M.: Digital Natives, Digital Immigrants, On the Horizon, MCB University Press,

Vol. 9 No. 5, October 2001

4. European Computer Driving License – ECDL, www.ecdl.org/

5. App Inventor for Android, http://appinventor.googlelabs.com/about/

6. Arduino Open hardware Project, www.arduino.cc

7. Barbero, A., Demo, G. B., Vaschetto, F., A Contribution to the Discussion on Informatics

and Robotics in Secondary Schools, in Proc. RiE 2nd International Robotics in Education

Conference, 15-16 September 2011, (to appear).

8. S4A - Scratch for Arduino, http://seaside.citilab.eu/scratch/arduino

9. Wing, J., Computational thinking is a fundamental skill, Presentation in the Computer

Science Distinguished Lecture Series at Carnegie Mellon in Qatar, April 2011

http://www.cmu.edu/news/blog/2011/Spring/computational-thinking.shtml

10. Guzdial, M., Ericson, B. Introduction to Computing and Programming in Python, A

Multimedia Approach, 2/E, Pearson , (2010)

11. Tomatis, M., “Mathematics and Informatics for crimes”, Seminar at the Department

Computer Science, University of Torino, www.marianotomatis.it/index.php?lang=en

http://www.grin-informatica.it/
http://www.grin-informatica.it/
http://www.ecdl.org/
http://www.arduino.cc/
http://seaside.citilab.eu/scratch/arduino
http://www.cmu.edu/news/blog/2011/Spring/computational-thinking.shtml
http://www.marianotomatis.it/index.php?lang=en

ICT in the Czech and Slovak National Curriculum

Jan Berki1,

1 Department of Applied Mathematics, Faculty of Science, Humanities and Education,

Technical University of Liberec, Studenstka 2

46312 Liberec, Czech Republic

jan.berki@tul.cz

Abstract. One source of the revision of the curriculum is the international

experience. This article describes a probe based on a conceptual analysis of the

national curriculum documents of two countries with similar conditions – the

Czech Republic and Slovakia. The comparison focuses on three parts:

a comparison of the definition of the concept of basic education and its content,

the areas of education focused on computer science and the amount of

integration of ICT into other educational areas. The interview with three

teachers of these educational areas was focused on the vision of changes in

concept of the curricula at the national level.

Keywords: National curriculum, computer science, information and

communication technology, conceptual analysis.

1 Introduction

Informatics is ranked among newer – yet well-established disciplines. However, as

a field of education, it has built its nest only recently, in terms of basic education.

Therefore, any examination or assessment of the curriculum should be, on principle,

based on comparison with foreign concepts. Evaluation should be a natural

component of scheduled, cyclical revisions of curricular documents. The aim of this

study is to evaluate identical features and differences between the national informatics

curricula introduced in the Czech Republic and in Slovakia.

We are connected with the Slovak Republic in various ways, and our common

history is an extremely important and strong link between the two countries. Due to

the fact that we used to be two states in one, it is obvious that the Slovak Republic is

very similar to our country, both from the geophysical and the (geo)political point of

view. In general, there are not many differences in terms of the initial situation in the

educational systems. Both countries have chosen a very similar approach to

educational reforms. What is more, understanding Slovak in our environment is

broader than understanding other (although international) languages. Therefore,

choosing Slovakia for comparison suits the purpose very well.

mailto:jan.berki@tul.cz

2 Definition of terms and content of study

To qualify the content of the study, a concept hierarchy defined by Punch [1] is

used:

 Area: Information and communication technologies (ICT) in the basic school

curriculum

 Theme: ICT in the Czech and Slovak national curriculum

 Aim: To compare the ICT areas in the Czech and Slovak national curricula

(to describe identical and different features)

 General research questions: What are the concepts of the ICT educational area?

What is the same in terms of ICT implementation concepts in the Czech and

Slovak curricula? What is different?

 Specific research questions: What is the main objective of the ICT educational

area? What sub- aims have been defined within this context? Are information

and communication technologies integrated in other educational areas

systematically? Which grades and how many ICT lessons are involved? How is

the concept accepted and assessed? What is the nearest future of the concept?

Within both compared systems, two levels are included in the basic education –

primary education in the sense of level 1 in the International Standard Classification

of Education (ISCED 1); and lower-secondary in the sense of ISCED 2. [2] A pupil

means an subject of education. Basic education is usually provided by basic schools.

For the purposes of this study, the basic school means a fully organized basic school

with all grades, i.e. with 1
st
 through 9

th
 grades. In either country, the lower-secondary

level in basic school corresponds to the lower-secondary level (ISCED 2) in schools

called "gymnázium".

There is disambiguity in terms of definitions connected with informatics,

information and communication technologies, information education, educational

informatics, and in regard to their correlations. Viewing the fact that this is one of the

aspects subjected to the research, it is necessary to avoid any definitions in this

chapter as this would lead to anticipation of conclusions, which may influence the

fair-mindedness of the analysing. Let’s not forget that, for example, in English

language there are some other definitions as well, such as computer science,

information science, information technology etc.

The curricular documents subjected to the examination are the documents which

are used by relevant organizational bodies within the government (i.e. the legislative,

as well as executive bodies) in order to specify the educational content of the basic

education. Although the analysis is mainly focused on the educational area of ICT, the

context of other parts of the document cannot be omitted. Implementation of the

concepts in basic schools is not the aim of this study but a comprehensive comparison

of e.g. Framework Educational Program and School Educational Program may be

interesting. Roughly, this has already been done at the level of content analysis [3].

The curricular documents define mandatory framework, on which schools educational

programmes have to base. Current version of Czech national curriculum has been

since 2007 and Slovak since 2008. This means the last classes are still taught

according to the old programmes in this school year.

3 Methodology

In compliance with Punch [4], having completed chapters dealing with questions,

what we examine and why, we will describe how the declared aim can be achieved.

The specific research questions have been divided in two categories, while the

criterion was whether the question stands for a description or an attitude.

Thus, the solution of the first part of the study follows from the aim to analyse the

text document. The conceptual content analysis [5] was narrowed to searching for

defined features in the sample of unique terms. The analysis was conducted on two

levels. Terms include both words (e. g. model, electronic, digital), but also

topics/phrases (ICT). Part of speech or grammatical case didn’t decide into account.

Such words were accepted as equal. Although the code led to a record level of word-

frequency, not the relationship between characters is not possible according to Haman

[9] possible to ignore the context of maintaining the validity of the data. Irrelevant

information was left out. The research data contained the Framework Education

Programme (FEP) for basic education [6] and the National Education Programme

(SEP) for the primary school [7] and for the lower-secondary school [8]. Irrelevant

data sets were put aside.

The main objective of the study was to compare the results from the conceptual

analyses of particular curricular documents. The following comparison criteria had

been set:

 Name of the subject,

 Number of mentions, accent upon the ICT in the preamble,

 Degree of integration of ICT in the other educational areas, or the number of

mentions about ICT in the subject matter, outputs or in the preamble of other

educational areas

 Number of ICT lessons and placement in grades,

 Theme blocks – curriculum x outputs,

 Definition of the content, specification of the aim of the educational area,

 Conception /orientation within the primary and the lower-secondary level.
In general, they were completed with the following:

 Total number of lessons,

 Cross-curricular themes.

The part which is focused on questions related to possible (scheduled) shifts within

the content of the curricular documents actually follows from interpretation of

opinions and attitudes towards current wording of relevant persons. The main

research method used within this part of the study was an interview. Prior to the

interview, based on the research questions, themes have been specified. Interpretation

of the interview then provides respondent’s attitude. According to Chráska [10], this

type of interview is called "unstructured interview" as neither specific, particular

questions nor their order had been set. However, the prepared themes, according to

Švaříček [11], may be a significant feature of a semi-structured interview. This kind

of interview cannot be conducted as neutral, as the interviewer communicates and

interacts with the respondent. Whenever possible, a form of a natural interview was

applied, within relaxed atmosphere, without hurrying, not to reduce the asymmetry

level of the speech flow. From this reason, the interviews were not recorded (it was

not natural, in terms of the situation). The content of the interview was recorded after

the interview had been completed, which Chráska [10], from the psychological point

of view, considers as more suitable. The records are not transcriptions but

interpretations only.

Themes used for interviewing (regardless the order):

 Examples of best practice from abroad (examples)

 Priorities within primary education

 Degree of satisfaction with status quo

 Positive features in terms of status quo

 Suggested changes/shifts for the "domestic" curriculum

 Suggested changes for the "neighbour’s" curriculum (to their knowledge)

It is anticipated that the respondents’ attitude towards the curriculum is rather

positive. Interviews were conducted with three teachers. Each of them is

representative of another part of education system. One is a man, Slovak, acting at

university. Second is a woman, Czech, acting at research institute. And the last is

a woman, Czech, teaching at basic school. All of them are middle-aged people. All

respondents work with curricular documents in their practice.

4 Comparison

The following sub-chapters correspond to the declared parts of the comparison.

First, the general concept of the basic education is compared. The second sub-chapter

is focused on the ICT educational area and on differences in the conception. At the

conclusion, assessment on prospective changes in the curriculum is provided.

4.1 Differences in the concepts

The first – and very obvious – difference is the concept of the document alone. The

Czech version has been developed as a single document which comprises the

characteristics of both educational levels (ISCED 1, 2) and complex characteristics of

the educational areas and fields of education. In the Slovak version, the levels are

separate and they are described in separate documents. In the Czech environment, the

ISCED 1 is divided in the 1
st
 and 2

nd
 period. In the Czech curriculum, the educational

areas are divided into fields of education, while their distribution into specific school

subjects depends on the school. The Slovak concept determines obligatory subjects in

the educational areas as well. Detailed characteristics of the subjects can be found in

the Attachment. The educational areas are defined by means of the characteristics (the

description and the aims), theme blocks or units (in the Slovak version – the

description and the aims, definitions, properties and relationships, procedures and

methods), anticipated outputs and the subject matter. The Slovak theme blocks are

defined by means of an educational standard (both the content and the performance).

Educational standards have been developing in the Czech environment as well.

However, they do not exist for the ICT (yet).

The headstones of the school reform are the so-called key competences. They are

similar in both concepts (refer to Table 1).

Table 1: Key competences

Czech key competences
Slovak key competences

ISCED 1 ISCED 2

* Learning competencies

* Problem-solving
competencies

* Social and personal

competencies
* Civil competencies

* Working competencies

* Communication
competencies

* Learning to learn

* Problem solving
* Social-and-communicative

competences

* Personal, social and citizenship
competences

* ICT competences

* Perceive and comprehend the
culture, being able to express

yourself through instruments of

culture
* In the area of mathematical and

scientific thinking

* Competence for life-long learning

* Problem solving
* Social-and- communicative

competences

* Social and personal
* Citizenship competence

* Work-related competence

* ICT competences
* Perceive and comprehend the

culture, being able to express

yourself through instruments of
culture

* Apply the base of mathematical

thinking and general ability to learn
in the field of science and

technology

* towards initiative and go-
aheadness

In regard to the content of the article, it is worth noticing that within the Slovak

concept, the ICT-related competences are the key competences. In addition to the

ability to use the selected ICT, communication through electronic media and (related-

to-the-age) ability to search for information on the internet, this area is connected with

the problem area of danger of virtual world. The topic of e-safety is a "trendy" topic

in the Czech Republic as well. However, algorithmic thinking is missing in the Czech

curriculum.

In regard to the cross-curricular themes, the curricular documents do not differ

much (refer to Table 2). Attention should be paid to integration of media-related

education.

Table 2: Cross-curricular themes

Czech Slovak

* Personal and social education
* Democratic citizenship

* Education towards thinking in European and

global contexts
* Multicultural education

* Environmental education

* Media education

* Personal and social education
* Traffic education

* Project work and presentation competences

* Safety and protection of health and life
* Multicultural education

* Environmental education

* Media education

The last comparison (Table 3) is focused on school subjects and disciplines whose

titles follow from the names of the subjects previously included in the school

curriculum. Analysis of (ICT-)words-frequency was realised on all of these fields.

Table 3: Educational fields

Czech Slovak
Language and communication

 (Czech language and literature, Foreign language)

Mathematics and its application
Information and communication technologies

Humans and their world1

Humans and society2
 (History, Civil education)

Humans and nature2
 (Physics, Chemistry, Natural sciences, Geography)

Arts and culture

 (Music, Fine arts)
Humans and health

(Education to health, Physical education)

Humans and the world of work

Language and communication

 (Slovak language and literature, Foreign language)

Mathematics and information processing
(Mathematics, Educational informatics1,

Informatics2)

Nature and society1
 (Science and homeland study)

Humans and nature2
 (Physics, Chemistry, Biology)

Humans and society2

 (History, Geography, Social studies)
Humans and values

 (Ethics / Religion)

Humans and the world of work
 (Manual training)

Arts and culture

 (Music, Fine arts,
 Education through art)

Health and physical movement

 (Physical education1, Physical education and
sports2)

1 primary only (ISCED 1) 2 lower-secondary only (ISCED 2)

4.2 Differences in the educational area

Let us start with the differences described in the first part of the comparative study.

In Slovakia, besides the educational area, the ICT is defined as the key competence as

well. In the Czech environment (refer to Table 3), the area is named "Information and

communication technologies" and it is a separate area. Within the Slovak curriculum,

information processing is grouped with mathematics, and it is divided in two subjects.

Educational informatics is taught at the primary level (ISCED 1) and Informatics is

scheduled for the lower-secondary level (ISCED 2). The allocation of lessons is

shown in Table 4, including disposable lessons which can be added by the school to

a particular educational area. The basic difference is the even distribution of the

lessons among the grades within the Slovak concept, contrary to the one-off allocation

in one grade in the Czech environment (refer to Table 4). It is obvious that this

approach does not allow a cyclical development of competences in this area. We can

deduce that the intention was to develop skills for mastering the technologies. The

application level should have been added within the other subjects. The fact that this

aim has not been fulfilled in the Czech Republic is shown in the theme report issued

by the Czech School Inspectorate. It is declared that the main cause of the failure is

the unsatisfactory level of ICT competences in teachers.

Table 4: Allocation of lessons

Areas / Subjects
Grade

1

Grade

2

Grade

3

Grade

4

Grade

5

Grade

6

Grade

7

Grade

8

Grade

9

Information and
communication

technologies

1 1

Educational

informatics
 1 1 1

Informatics 0,5 0,5 0,5 0,5 0,5

Disposable lessons 14 24

Optional lessons 5 5 5 5 6 6 6 6 6

Total allocation 118 122

Minimum 18 18 22 22 22 28 28 30 30

Maximum 22 22 26 26 26 30 30 32 32

Total 22 23 25 26 27 29 30 30 30

note: The grey colour means the Slovak concept.

It is obvious – and the names of the subjects clearly indicate that the orientation

and the content of the subjects is different. The aim of the Slovak curriculum in the

area of informatics is to build competences in terms of working with data, in fact,

within the discipline of the same name. On the contrary, the aim of the Czech

curriculum indicates the emphasise upon work with technologies. Let us compare the

theme blocks (refer to Table 5)

Table 5: ICT themes

Czech Slovak
Basics in using computers

Searching for information and communication

Information processing and usage

Information around us

Communication through ICT

Procedures, problem solving, algorithmic thinking
Principles of ICT functioning

Information society

On the Czech side, two themes are missing: first, the algorithmization or, more

precisely, algorithmic thinking (which should be understood as the base of the

Informatics), and the information society. This social context is completely omitted

within the Czech concept. In part, this phenomenon is present within the context of

social networks but neither the (expected) analysis of the changing society nor the

relationships created on the basis of ICT is included. Obviously, this theme may be

classified as the theme not related to any specific subject, or the theme slightly

included in the area of civics, or social studies. The Slovak subjects at the primary

level are focused on development of basic competences for work with data in the

electronic form. The ability to use computer resources in everyday life is emphasized

in both of the national documents.

The usage of common keywords through the entire concept is the interesting

context. The Table 6 shows the basic keywords. Also a related form of the word was

a part of the occurrence. The analysis did not contain the chapter, which directly

define the content of computer courses.

Table 6: Number of words

Czech

(86 pages)

Slovak

 (37 pages)

Information 41 25

Communication 77 56

Technology 5 1

ICT was mentioned 4 times in the Czech curriculum and 12 times in the Slovak.

And according to this fact is evident that the area of Informatics Study plays the more

fundamental role in the Slovak concept. The other terms have been occurring: the

model (27, 11) – usually in the meaning of Scenario, the computer software in various

versions (6, 2) electronic (7, 4), the algorithm (6, 1), etc. The most common keywords

with the area of ICT in the Czech document are in the area of Language and

Language Communication (communication, information), Mathematics and its

Applications (model), Arts and Culture (communication), and this is the same area in

the Slovak language as well. However, this is the Art, which contain the most of the

direct links to electronic versions of documents in the Czech educational field as well

as in the Slovak version.

4.3 Differences in future development

The information in this chapter were obtained thanks to the interviews with three

respondents about their opinions of national curricular document in their countries.

The concept of the Great Britain was identified as an example of good international

practice in the Czech and Slovak republic as well. New Zealand was marked as the

potential model from one respondent. The ability of learning was supposed as the

basic aim and it is the preparation for work and social life, too. The main change in

the Slovak concept should be more rigorous curricula. On the other hand, the Czech

respondents consider greater flexibility as an advantage. A range of teaching

Informatics at the primary school and the teaching of algorithm and programming

(also there is no difference between them at this first degree of schools) are the most

important positive phenomenon of Slovak cirruculum.

It would be good to start with changing of the name of subject in the Czech

curriculum. It is possible dividing the subject of ICT to two parts – one of them is

focuses on digital technology and the second one is focuses on Computer Science.

A major problem is a failed identification what are the computer science skills. ICT

standards should be included in FEP. A greater integration of ICT into the other

subjects is not possible because of the low level of ICT skills non-informatical

subjects.

4.1 European comparison

European Schoolnet issues reports focused on ICT in education. Overview of seven

national curricula [12] has included the Czech Republic, Finland, Lithuania, Norway,

Portugal, Slovakia and Switzerland. We can find ICT competences like key

competences in Norway and Switzerland too (excepting Slovakia).

There is specified ICT knowledge in these same countries at primary level. Most of

the described countries, excepting Portugal, define ICT skills in their curricula. And

Norwegian, Lithuanian and Swiss documents define ICT attitudes. Situation of

secondary level is different in curricula. There are defined as ICT knowledge as ICT

skills in all of these countries. Portuguese and Czech concepts don’t defined ICT

attitudes neither for secondary level.

5 Conclusions

It may be preferred the opinion that more changes are needed in the Czech concept.

The content of the course must be define more precisely and must be more connected

with computer science, respectively with algorithm. Increasing the prestige and the

pressure on the integration of ICT into other subjects within the meaning of

application would be including ICT skills among the key competencies. The second

step should be more explicit declaration in the context of educational content –

expected outcomes and curriculum in the FEP. The integration of passages of

computer education would require also an increase in the time allocation and

distribution of this subject to more years to develop a systematic means to work with.

This article was created with financial support of the project SGS-FP-TUL 20/2011.

6 References

[1] Punch, K. F. Základy kvantitativního šetření. 1st edition. Praha: Portál, 2008. 152 pgs.

ISBN 978-80-7367-381-9. (EN version – Punch, K. F. Survey research: The basics.

SAGE, 2003. 136 pgs. ISBN 9780761947059.)

[2] Průcha, J. Srovnávací pedagogika. 1st edition. Praha: Portál, 2006. 264 pgs.

ISBN 80-7367-155-7. (Analogous in EN – Basic Education and the review of the

ISCED [online]. Draft Version October 2009, UNESCO Institute for Statistics. p. 3.

[cit. 2011-07-13] Available from <http://www.uis.unesco.org/Education/

Documents/ISCED_RM_Basic_Ed_proposal_EN.pdf>.)

[3] Berki, J. a kol. Sonda do obsahu ICT předmětů. Unpublished yet.

[4] Punch, K. F. Úspěšný návrh výzkumu. 1st edition. Praha: Portál, 2008. 232 pgs.

ISBN 978-80-7367-468-7. (EN version – Punch, K. F. Developing Effective

Research Proposals. SAGE, 2007. 176 pgs. ISBN 9781412921268.)

[5] DVOŘÁKOVÁ, I. Obsahová analýza / formální obsahová analýza / kvantitativní

obsahová analýza. AntropoWebzin, 2010, 2. [online]. Antropologie, Západočeská

univerzita v Plzni, c 2010. [cit. 2010-09-27]. Available from

<http://antropologie.zcu.cz/media//webzin/webzin_2_2010/AntropoWebzin-2-

2010_1_.pdf>. ISSN 1801-8807. (Analogous in EN – Methods of Conceptual

Analysis [online]. © 1993–2011, Colorado State University. [cit. 2011-07-13]

Available from <http://writing.colostate.edu/guides/research/content/pop3a.cfm>.)

[6] Rámcový vzdělávací program. Praha: Výzkumný ústav pedagogický v Praze, 2007.

(EN version – Framework Education Programme for Basic Education. Prague:

VÚP, 2007. Available from http://www.msmt.cz/vzdelavani/framework-education-

programme-for-basic-education.)

[7] Štátny vzdelávací program pre 1. stupeň ZŠ v SR [online]. Bratislava: Štátný

pedagogický ústav, 2008. [cit. 2011-03-10]. Available from

<http://www.minedu.sk/index.php?lang=sk&rootId=2319>.

[8] Štátny vzdelávací program pre 2. stupeň ZŠ v SR [online]. Bratislava: Štátny

pedagogický ústav, 2008. [cit. 2011-03-10]. Available from

<http://www.minedu.sk/index.php?lang=sk&rootId=2319>.

[9] Haman, A., Jílek, J. Obsahová analýza beletrie pomocí obsahových indikátorů In

Materiály, studie, informace 17. Praha: Státní knihovna ČSR, 1986.

[10] Chráska, M. Metody pedagogického výzkumu – Základy kvantitativního výzkumu.

1st edition. Praha: Grada, 2007. 265 pgs. ISBN 978-80-247-1369-4. (Analogous in

EN – see below.)

[11] Švaříček, R., Šeďová, K. a kol. Kvalitativní výzkum v pedagogických vědách.

1st edition. Praha: Portál, 2007. 384 pgs. ISBN 978-80-7367-313-0. (Analogous in

EN – ESDS Qualidata teaching resource: exploring diverse interview types

[online]. © 2003–2011, Universities of Essex and Manchester. [cit. 2011-07-13]

Available from <http://www.esds.ac.uk/qualidata/support/interviews/semi.asp>. –

or – Semi-structured interview [online]. Wikipedia, the free encyclopedia, last

modified on 2011-05-12. [cit. 2011-07-13] Available from <http://en.wikipedia.org/

wiki/Semi-structured_interview>.)

[12] Balanskat, A. (ed.) Review of National Curricula and Assessing Digital Competence

for Students and Teachers: Findings from 7 Countries [online]. Brussels: European

Schoolnet, 2010. 116 pgs. [cit. 2011-07-13] Available from <http://cms.eun.org/

shared/data/pdf/curricula_review_final_reduced.pdf >.

Informatics for Primary Education. The case of Russian

mathematical school
Elena Bulin-Sokolova (Center for Information Technologies and Learning Environments, Moscow),

Alexei Semenov, and Valery Vardanyan (both – Computing Center of Russian Academy of Sciences,

Moscow)

What do we understand by Informatics? A sketch
Before giving an answer to the question let us say that we are going to present only one possible view

on the school subject by name informatics. The goal of our paper is not to discuss this, but mostly to

elaborate what our group in Moscow understands by this term. We do not pretend that we have the

only ingenious understanding of it.

The traditional and the contemporary mathematics

The ancient mathematics developed starting with numerical quantities (integers and rationals) and

geometrical objects. Then it moved to the continuum – real numbers and to continuous processes. In

XIX century abstract algebra was invented, but primarily as a tool to describe and analyze space

transformations and equations’ solutions. A radical change started in the second part of XIX century:

beyond proving and calculating we started to develop a general understanding what is proven theorem

and what is computable function. This understanding was completed in its most important components

right in time: when emerging computers started to do complex computations and human intellectual

work.

So, for us informatics is the science of mathematical study of human and computer formal reasoning

and algorithmic behavior. It is called also theoretical or fundamental informatics, mathematics of

computation, or theoretical computer science as well as discrete mathematics or finite mathematics. It

is not a part of hardware or software engineering but lies in the fundamental basis for them as well as

for other fields of technology and science.

Recreational math, puzzles, parables and wisdom

We think that informatics as described above is the place where the school education can be enriched

by involving into it treasures of human culture, represented by ‘recreational’ puzzles (started with

puzzles of Alcuin - Flaccus Albinus - river-crossing of wolf, sheep, and cabbage etc.) parables, and

paradoxes.

The school mathematics and informatics
Why do we teach mathematics in school? This is our way to develop reasoning abilities of students, to

provide a part of general understanding of the world, and to give a toolkit for reasoning (and

development of reasoning) in other subjects.

We believe that the similar is true for informatics in school. It can (to a large extent) contribute to

development of students’ reasoning, to help in general understanding of the world (cf. Cybernetics). We

think that the algorithmic, process reasoning can contribute more to effective human behavior than

other types of mathematical reasoning. We think also that the development of the ability of algorithmic

thinking should go in the process of problem solving.

http://en.wikipedia.org/wiki/River-crossing_puzzle
http://en.wikipedia.org/wiki/River-crossing_puzzle

We should admit that informatics in school contribute little today to reasoning in other subjects beyond

this general understanding. Nevertheless we believe that following concepts (and terms), as well as their

scientific and every-day meaning, should be studied in informatics and used in other subjects: system

and its components, interaction, signal, signal transmission, control, feedback. In their study formal

automata theory as well as visual programming can be used as a source of problem-solving activities

(see below).

Connection with ICT in school
In Russia informatics as a school subject appeared in the mid-1980-s by a decision of the top-level

authorities of the country. But the name of the subject of that time was “Basics of Informatics and

Computer Technology”. So, informatics was distinguished from computer technology. Today the name is

“Informatics and ICT”. Again, the difference is assumed. Moreover, today:

1. ICT learning and mastering is dissolving and being made effective and motivating in other subjects.

2. The outcomes of the Informatics study are outlined by the Informatics exams (after 9-th grade, and

final, after 11-th grade) as mathematical informatics problem-solving activity.

So, school informatics is not study of ICT.

How ICT help in learning informatics

To understand this it is good to consider how ICT help in other school subjects. We think that there are

two major functions of ICT in learning as well as in other fields of human activity:

1. Tools (instruments) for information processing

2. Information sources and access to them

In our vision of school informatics the second function is not so much relevant for the goals of learning

informatics. The first is more important. Again, in the first function general tools as LMS or text editor

are used, but subject specific tools are important for learning informatics. These are tools that visualize

and materialize objects and processes of informatics and provide visual and spatial environments to

construct them.

For primary education this is extremely important. Also important is that informatics environments for

mathematical constructing and reasoning can compensate pure (still) mental and pen-paper objects of

other parts of mathematics. Sometimes environments for informatics, arithmetic, and geometry are

joined in one environment as happened in the miraculous Logo.

How informatics helps in learning ICT

Let us repeat: informatics is the fundamental science of human reasoning and formalized behavior as

well of information processing happening not in human brains and human adjacent environments (like

in pen-and-paper calculations) but in the modern and (predictable) future digital technologies.

 So, informatics can (and cannot) help in using computers in using ICT as (roughly speaking) physics can

help in ironing and chemistry in cooking. In fact both learning informatics and using ICT immerse

humans into a new reality of “being digital” as well as physics and using machinery gives them feeling of

“being material and technological”.

Algorithm design and programming

We believe that algorithm design (and algorithm execution “by hand”) is an important part of

informatics. Solving problems of algorithm design can be facilitated by using virtual (computer)

environments of the design and execution of algorithms. Naturally, the activity of algorithm design in

such environment can (and usually does) follow a formal discipline, syntactic rules and restrictions, etc.

This means that the student does practical programming and should learn these discipline, rules, and

restrictions. But the goal is the algorithm design, as less rules and restrictions should be learned as

better, correlation with existing programming “industrial” languages is not relevant, etc.

Motivation coming from the real effect (nice graphical design, unexpected result of numerical

experiment, winning a game against opponent or computer) can be very important, motivation by the

fact of using “adult” programming language is not so important (with some exception of very small high

school population that is going to enter relevant universities or job places).

An important phenomenon of debugging should be considered very carefully. From one-hand side it is a

very productive way to correct and further develop your reasoning. From another hand side it should

not be used as a trial-and-error blind method to obtain needed result without serious thinking and

proving.

Math and info in primary

Everything is visual and palpable

The one most important feature of our approach to math and informatics in primary school is the

emphasis of seeing and understanding of all objects and processes, their properties, and operations. Let

us make this clear. In a word problem about travellers with speed of 5 or 50 kmph via distance 10 or 100

km a student does no see the distances and speeds. When we ask a student to construct a string

following a given instruction she or he sees all objects and actions.

In arithmetic we spend more time on counting. The experience of exact counting of few thousands of

seeds (peas, or beans for example) provides basis for understanding by inventing of: commutative and

associative laws, division of labor, etc. Trying to make 100 (or any other number) as a sum of lengths of

some of 7 rods of different length is a good addition exercise as well as introduction to NP-

completeness.

Objects

Primitive objects (atoms) are beads. Beads can have shape and color, they can be symbols of alphabets,

digits, etc.

More complex objects are string and bags (multi-sets) of objects (recursively).

In multi-digit addition and multiplication we deal with visual objects (strings of symbols, not quantities)

but in a very narrow, restricted and not so practically important way. Here we work with our objects in

more logical and broader way.

Language and logic. Rules of the game

Understanding (written, mathematical) text is an important activity in math and info course. The initial

vocabulary is not big: bead, string, bag, be the same, operations on strings and bags, ‘all’, ‘there is’,

operators of structural programming.

Semantics is given (for a long initial period of learning) in graphical way by examples, not through verbal

explanations.

The first logical connectives are ‘all’ and ‘some’ and their synonyms. Examples: ‘there is a red bead in

any string here’ (on this page). One more connective is ‘no’, ‘not’: ‘there is no round bead in this string’.

The connectives can be used in a “dual” way: ‘all statements here are true’.

The ‘name – value’ correspondence (“variables”) is introduced early.

We consider the obtaining of clear and “formal” common understanding of restricted “math-info”

vocabulary as a very important result and condition of study. ‘Rules of the game” should be understood

and identical for teachers and students.

Algorithms

Algorithm design is based on structural programming operations. Visual environments for design and

execution are used. One of the most effective is Robot in the maze – the concept that was developed in

Bratislava, Cornell, and Moscow independently but in a surprisingly similar ways.

Logo phenomenon

Logo can be considered as a unique example of environment were different objectives of learning

informatics are well balanced in a visual setting.

We developed our version of Logo LogoFirst (IconLogo as Seymour Papert called it) to learn with before

reading and writing and to learn verbal literacy along with graphical and algorithmic literacies.

Interaction and games

Games are used widely. Strategic games of two players with complete information constitute an

important class of games. NIM – is an example.

Programmable Robot control in the real environment (on the floor) is a primary school introduction into

several topics, including feedback and event-driven programing. LEGO version of it gives a flexible

construction kit as well as a visual programming environment.

Complexity

Understanding of complexity is one of the goals in learning informatics. We mentioned above an NP-

complete problem (the Knapsack packing). Even more visual is considering the following problems: 1,

find a given face among 50 on the page. 2. Find two identical faces on the page of 40 faces.

Implementation

The described approach is used in hundreds of Russian schools for 25 years. Last year it was integrated

into the Federal standards for primary education in Russia.

Genesis of Mathematical Curves by Turtle Geometry

CSINK, László – FARKAS, Károly

Óbuda University, H-1034 Budapest, Bécsi u. 96/b
csink.laszlo@nik.uni-obuda.hu farkas.karoly@nik.uni-obuda.hu

Abstract.

Keywords: turtle geometry, syntonicity, epistemology, math teaching, Papert,
P·lya

1 Introduction

In our earlier work [1] we presented a new way of generation of a couple of curves

using turtle geometry. In this paper we discuss the epistemological issues regarding

our approach, as well as present some additional novel algorithms we have used in

teaching informatics in a humanities secondary school. In turtle geometry we focus on

the vital elements of Logo using its epistemological values with special emphasis on

syntonicity. When working with turtle geometry, we find the use of intrinsic

commands most effective for teaching mathematics and geometry on secondary

school level. We use the concept of syntonicity in Papert’s sense; we build on Logo’s

body syntonic and ego syntonic effect.

Our examples are based on two curve generation techniques. First, we put together

the curve by “jumping out” of the origin and build the curve from “stretches”.

Second, the curve is the combination of the work of several cooperating turtles, what

we call “electronic drama pedagogy”.

2 Epistemology

Logo’s role in education is clearly due to its impact on the development of thinking.

To realise Polya’s methods for improving problem solving skills, Papert thinks, Logo

is the most effective tool in many respects. Based on our experience, we agree. In

understanding and creating the algorithms for drawing certain mathematical curves,

the body syntonic impact of Logo is rather useful, namely the empathy with the

execution of the motion sequence. For example, to draw a square in Logo the

algorithm “repeat four times: step some units and turn 90 degrees (or one-fourth of a

full turn)” is well-known. Clearly this can be generalised to draw an n-polygon by

turning 360/n degrees at each vertex. To draw a circle, “repeat 360 times [step one,

turn one]” is the widespread Papert algorithm. This generation is based on the

intrinsic feature of the curve; it could be the symbol of turtle geometry. The circle is

approximated by a regular polygon. The circle in fact is the limit of the polygon

sequence when the number of sides tends to infinity. By this approach the circle can

mailto:csink.laszlo@nik.uni-obuda.hu
mailto:farkas.karoly@nik.uni-obuda.hu

be defined in a non-classical way, and it can also present the concept of limit in a very

expressive way in the secondary school.

We can go one step further. Using turtle geometry, most of the geometry

curriculum of the secondary school can be taught and learnt more easily. Moreover,

further mathematical curves can be demonstrated and taught using turtle geometry

that had been taught in higher education only. Concepts such as angle or parameter,

that were traditionally introduced in the fifth or sixth class in the elementary school

and were not easily understood, can be taught earlier and in a more student-friendly

way.

We think that both in secondary and higher education it is very important that

mathematics should be presented in a clear, understandable way. Therefore, the

curves in Logo should be first presented based on body syntony. How is the curve

created? How could we walk its path? The most plausible (but not the only) sequence:

step some length and turn some angle, like Papert’s circle.

Real turtle geometry uses polar coordinates instead of Cartesian. Analysing the

child’s learning, polar coordinates are more natural: we look around to see and extend

our hands to touch. When we first experience motion the point of reference is our own

body. The child creates a circle when he builds a toy train around himself or draws a

line in the sand with a stick.

3 Demonstration using “stretches”

In this section we present a series of examples that we find interesting and

stimulating. Some of these examples are not elementary and not part of the

compulsory material; nevertheless they are useful in developing thinking skills.

After the step-and-turn algorithm, we find it useful to present another one where

we draw the curve pixel-wise in a polar coordinate system. We stretch r pixels in the

start direction (e.g. north) and draw a point (a segment of length of one turtle step),

lift the pen and retreat r+1 pixels, turn one degree and repeat the above until we get

back to the start direction having done a full rotation. When the points are close

enough we need not connect them as the circle can be clearly seen without connecting

the points. If r does not change we have drawn a circle around ourselves. Decreasing

the angle – and thus increasing the number of repetitions – the circle will be finer. We

think that this method of drawing a circle is easier to empasize with, it is more

syntonic than the original Papert algorithm. Another advantage is that many other

curves can be generated similarly.

If r is not constant but varies according to some rule, various curves can be

generated in a body syntonic way. Rotation can be defined with respect to a given

angle or also with respect to the starting northern direction. The direction of the turtle

need not be stored by us as this is a parameter of the turtle that can always be referred

to. The length of the radius can be expressed in terms of the previous value, or the

starting value, or rotation parameters. The first is intrinsic, the second is extrinsic and

the third is mixed. Intrinsic Logo commands: forward, right. Extrinsic Logo

commands: setx, sety, setheading.

Our circle drawing algorithms:

repeat 360 [penup forward :r pendown forward 1 penup back

:r + 1 right 1]

or

repeat 360[penup forward :r pendown forward 1 penup back

:r + 1 setheading heading + 1]

We favour the first version that uses only intrinsic commands. The intrinsic

features of the circle are independent from the selection of the coordinate axes or the

starting point. To draw further curves we only have to substitute :r with a function of

rotation. Let us consider some examples.

Ellipse

On the various ways of how to generate the ellipse consult Pavel Boytchev’s film

[2].

A polar coordinate equation of the ellipse is:

Here a is ½ of one of the axis and e is eccentricity:

where c is one-half of the focal length. The eccentricity is a fraction. The smaller

the eccentricity, the flatter the ellipse. Based on the equation of the ellipse, this is how

r can be expressed in Logo:

make "r :a * (1 - :e * :e) / (1 + :e * cos :fi)

This is how we can draw an ellipse combining 360 points:

repeat 360 [make "r :a * (1 - :e * :e) / (1 + :e * cos

heading) pu fd :r pd fd 1 pu bk :r + 1 rt 1]

The value of :e is less than 1, so we have avoided division by 0. When :e is greater

than 1 it will not be an ellipse any longer. Our formula may still be used if we insert if

(1 + :e * cos heading) = 0 [rt 1] after repeat 360 [.

Before the command, :a and :e must be given, e.g. make "a 100 make "e

0,5

Fig. 1. Ellipse from 360 points.

We can also make a finer drawing:

repeat 3600 [make "r :a * (1 - :e * :e) / (1 + :e * cos

heading) pu fd :r pd fd 1 pu bk :r + 1 rt 0.1]

Fig. 2. Ellipse from 3600 points.

To draw an Archimedes spiral we can do the following:

to spiral :r :a

repeat 360 [pu fd :r pd fd 1 pu bk :r + 1 rt 1 make "r :r

+ :a]

end

Fig. 3. Spiral 20 0.2

The general algorithm looks like this:

to curve :f

;f is a list expressing the radius with the angle

repeat 360 [make "r run :f pu fd :r pd fd 1 pu bk :r + 1

rt 1]

end

Fig. 4. Curve [0.2 * heading]

With trigonometric functions, the use of heading is practical, e.g. the polar

coordinate form of sine can be seen in Fig. 5. We may note that the density of the

points in the line is not uniform due to the use of sine:

Fig. 5. Curve [100 * sin heading]

Here is the cardioid:

Fig. 6. Curve [50 * (1 ï cos heading)]

Now we are going to draw the nephroid (for a nice demonstration see [10]) whose

polar coordinate equation is the following:

where a is the distance between the two breakpoints of the kidney-shapes. The

formula in list processing will be

r = a * sqrt (1+3/2 * (power (1+cos φ) (sin φ)^2) 1/3 +

power (1- cos φ) (sin φ)^2 1/3))

We will get such a curve if we roll a circle of radius a/2 along the perimeter of

another circle of radius a. A fixed point of the rolling smaller circle will draw the

nephroid. The two breakpoints will be (a; 0) and (-a; 0).

Drawing a nephroid in Logo is:

to nefroid :a

repeat 360 [make "r :a * sqrt (1 + 1,5 * (power (1 + cos

heading) * sin heading * sin heading (1 / 3) + power (1 –

cos heading) * sin heading * sin heading (1 / 3))) pu fd

:r pd fd 1 pu bk :r + 1 rt 1]

end

Unfortunately, neither Imagine, nor MWLogo yields a correct curve:

Fig. 7. It is not nephroid

How can we modify the code to get a correct curve? Logo has misinterpreted the

first parameter of power as it was a complex mathematical operation. Let us do the

exponentiation separately (s and c denote the directions of sin and cos):

to nefroi :a

repeat 360 [make "s sin heading

make "c cos heading

make "r :a * sqrt (1 + 1,5 * (power (1 + :c)

* :s * :s (1 / 3) + power (1 – :c) * :s * :s

(1 / 3)))

pu fd :r pd fd 1 pu bk :r + 1 rt 1]

end

The curve has become symmetric but still not a nephroid. The problem is that Logo

still misinterprets our mathematical expressions. Therefore, we reformulate them by

further articulation to make the algorithm easier to understand:

to nefroid_stepwise :a

repeat 3600 [

make "c cos heading

make "s sin heading

make "cplus 1 + :c

make "cminus 1 - :c

make "ssquared :s * :s

make "esquareroot :cplus * :ssquared

make "msquareroot :cminus * :ssquared

make "esqrt power :esquareroot 0.333333

make "msqrt power :msquareroot 0.333333

make "product 1.5 * :esqrt

make "sqroot 1 + :product + :msqrt

make "root sqrt :sqroot

make "r :a * :root

pu fd :r pd fd 1 pu bk :r + 1 rt .1]

end

The result is:

Fig. 8. Nephroid

We should avoid complex mathematical expressions! Logo prefers simple

sentences. As Petőfi writes, ”I cannot understand that even common people do not

know or do not believe that simplicity is a general rule; those who do not have

simplicity have nothing”.

4 Electronic drama pedagogy

Divide the problem into subproblems, advises Polya in his book How to Solve It [3].

In the following, we generate curves by superposition using several turtles. Think of

one as the tune and of the other as the accompaniment, they jointly create harmony.

Let us create three turtles. This way more special, more mathematic motions can be

described with simpler motions and their superpositions. Adam’s (blue), Eve’s (red)

and Cain’s job is to execute the commands :a, :b, and both :a and :b, respectively.

When :a is continuous movement ahead, :b is turning, then Cain will rotate [1]. Such

a generation of sin was presented at the EuroLogo conference [4]. The superposition

of two harmonic motions results in a Lissajous curve [5]; a special case of which is an

ellipse [6]. When Eve partly adapts to Adam and lets herself being rotated, but also

moves radial; her path is a spiral. Changing Eve’s relative motion we will get various

spirals [6].

We get a spectacular group of second order curves if our three turtles move while

being tied to one another: Adam rotates, Eve rotates around Adam and Cain rotates

around Eve [6].

After the above published examples, let us have a look at a new one.

5 Combining the two approaches to generate Maurer roses

A Maurer rose can be described as a closed route in the polar plane. A walker starts a

journey from the origin, (0, 0), and walks along a line to the point (sin(nd), d). Then,

in the second leg of the journey, the walker walks along a line to the next point,

(sin(n·2d), 2d), and so on. Finally, in the final leg of the journey, the walker walks

along a line, from (sin(n·359d), 359d) to the ending point, (sin(n·360d), 360d). The

whole route is the Maurer rose of the rose r = sin(nθ). A Maurer rose is a closed curve

since the starting point, (0, 0) and the ending point, (sin(n·360d), 360d), coincide. [7]

Alternatively, a Maurer rose is a plot of a "walk" along an n- (or 2n-) leafed rose in

steps of a fixed number d degrees, including all cosets. [8]

Clearly turtle geometry is the best way to describe a motion like “closed route” or

“walk along” type. This has been done in Scratch:

Fig. 9. A Maurer rose in Scratch

let us start from the origin,

the first target of our walk is the point [sin n*d, d]

the next segment goes from here to [sin n*2d, 2d]

the third segment takes us to [sin n*3d, 3d]

and so forth…

Fig. 10. Scratch code of Maurer rose

It is clear that the general form of the vertices is [sin n*k, k], where k=0*d,1*d,

2*d, 3*d, ... , 360*d , and d is a positive integer.

Our turtle’s first position is the origin, the second position is the point P1 whose

distance from the origin is sin :n * :d and it lies on the ray forming angle :d with the

base direction (north).

The third position is P2 whose distance from the origin is sin :n * 2 * :d and it lies on

the ray forming angle 2 *:d with the base direction (north).
The code in Fig. 10 was downloaded [9]. We can see that the program Scratch

definitely demonstrates the program structure using various colours and symbols. We

shall write this in another way using MicroWorlds Ex Logo.

Let us have two turtles:

to stage

newturtle "Adam setcolor 116 st

newturtle "Eve setcolor 16 st

end

Eve designates the vertices one after the other. Adam will, after finding a new rose

point, run to Eve. Connecting these points, results in a Maurer rose:

to maurer :n :d

make "k 1

Eve, pu

repeat 361 [Eve, seth remainder :d * :k 360 fd 200 * sin

:n * :d * :k

Adam, towards "Eve fd distance "Eve pd

Eve, bk 200 * sin :n * :d * :k

make "k :k + 1]

end

The spanning curve which connects the vertices is constructed as follows:

to spanning :n :d

Adam, setpensize 3 setcolor 56 pu

repeat 360 [

Eve, seth :d fd 200 * sin :n * :d

Adam, towards "Eve fd distance "Eve pd

Eve, bk 200 * sin :n * :d

make "d :d + 1]

Adam, setpensize 1 setcolor 116

end

The spanning curve, drawn in green, is the envelope of the Maurer rose. The

Scratch rose above looks like this in our program:

Fig. 11. spanning 5 97 maurer 5 97

If we insert wait 3 before the bracket in line 3, the generation of the polygon can be

clearly followed.

Fig. 12. The first 4 phases of one of the Maurer roses

One can clearly see the connection between the Maurer roses and closed cycloids.

6. Summary

In this paper we have discussed the epistemological issues regarding our approach, as

well as presented some additional novel algorithms we have used in teaching

informatics in a humanities secondary school.

We think that syntonicity is the vital concept of real turtle geometry. We think that

intrinsic Logo commands are better than extrinsic ones when we students to

understand the programs. Our examples are based on two model generation

techniques. First, we put together the curve by “jumping out” of the origin and build

the curve from “stretches”. Second, the curve is the combination of the work of

several cooperating turtles, what we call “electronic drama pedagogy”.

We demonstrate how these two approaches can be combined to generate the

Maurer roses in a novel way.

References

1. Csink, L., Farkas, K.: Turtle’s Curves. In: R. T. Mittermeyer M. M. Sysło (ed): Proceedings

Informatics Education Contributing Across the Curriculum, Torun, Poland, 76-86 (2008)

2. Boytchev, P.: http://www.youtube.com/watch?v=1v5Aqo6PaFw [12 February, 2011]

3. Polya, Gy.: How to Solve It; Induction and Analogy in Mathematics. Princeton University

Press, Princeton; and (1969) Patterns of Plausible Inference Princeton, N. J. Princeton.

(1954)

4. Farkas, K.: Logo and native language. Intrinsic procedures of some curves. In: Secundino

Correia (ed.): Proceedings of the 9th European Logo Conference, Porto pp. 69-79 (2003)

5. Foltynowicz, I.: Cicloids and limacons in the turtle graphics. In: Kalaš, I. (ed.) Proceddings

of the 11th European Logo Conference, EuroLogo, Bratislava, Slovakia, August. p. 50

(2007)

6. Csink, L., Farkas, K., Tasnádi, I.: Playful Turtle Geometry in the Paradise. In: James E.

Clayson and Ivan Kalas (ed): Constructionist approaches to creative learning, thinking and

education: Lesson for the 21th century, Paris, p. 51 (2010)

7. http://en.wikipedia.org/wiki/Maurer_rose 28 [March, 2011]

8. http://mathworld.wolfram.com/MaurerRose.html [28 March, 2011]

9. http://scratch.mit.edu/projects/mathjp/689739 [January, 2011]

10. http://www.youtube.com/watch?v=XnOpOqWWP5o [28 June, 2011]

http://www.youtube.com/watch?v=1v5Aqo6PaFw
http://www.youtube.com/watch?v=XnOpOqWWP5o

Information Education in ICT teacher education at the
Faculty of Education in Prague

Miroslava Černochová

Charles University in Prague, Faculty of Education, Dept. of Information Technology and

Technical Education, M.Rettigové 4, 116 39 Praha 1, Czech Republic
Miroslava.Cernochova@pedf.cuni.cz

Abstract. The author analyses and summarises the experiences of teaching of
three compulsory pedagogical courses (ICT in Education, Systems of Open
Teaching and Pedagogy for Information Education) to ICT student teachers and
focussing on knowledge of instructional methods as a key component of
pedagogical content knowledge in ICT teacher professional competency. In
these courses, the student teachers are trained to be able to apply appropriate
teaching methods for teaching ICT and Informatics in basic or secondary
schools. The courses cultivate student teachers theoretical knowledge and
practical abilities and facilitate their skills’ development to be able to
implement ICT into school practice in three main directions: ICT specialisation,
ICT application across curriculum and ICT as a technological platform of
educational and working environment.

Keywords: information education, ICT teacher education, informatics,
curriculum, Moodle, programming

1 Introduction

The Faculty of Education at Charles University in Prague educates student teachers
for teaching subjects to be found in the basic and secondary school education
curriculum, including subjects concentrated on computer technologies. As a
consequence of Bologna process, most of the five-years’ Master´s degree study
programmes at the Faculty of Education (including those for technical and
information education) contained a set of compulsory, pedagogical and teaching
methodological subjects. Experiences gained in these pedagogical subjects on how to
teach ICT in schools are now exploited via a new set of pedagogical courses, re-
conceptualised as two-years’ Master´s degree study programmes for ICT or Technical
and Information Education. The graduates of these study programmes will be able to
work at basic or secondary schools as teachers of subjects focused on computer
technology, ICT, Informatics or technical education.

mailto:Miroslava.Cernochova@pedf.cuni.cz

1.1 ICT and Informatics in the curriculum for Basic and Secondary School
Education

In the Czech Republic, Information and Communication Technology (in short ICT)
is integrated into curriculum for basic school education (aged 6 -15) which is aimed at
two crucial topics:

• Searching information and communication
• Information processing and exploration.
In these topics, great attention is paid to development of pupil´s skills of how to

search information on the Internet, portals, libraries and databases, how to
communicate via the Internet or other ordinary communication technology and how to
work with texts and pictures in text and graphic processors.

Primary school pupils (aged 6-11) are trained to work with a computer in order to
be able to use fundamental standard computer functions and hardware (HW), to
respect rules for save work and behaviour with HW and software (SW) and to protect
data against their damage, loss and misuse.

The educational domain, ICT, enables pupils to achieve a basic level of
information literacy to be able to orient in the information world, to use information
creatively and for learning and practical life [21].

The ICT literacy development continues at secondary schools (gymnasium) in the
educational domain, Informatics and ICT, which contributes to systematic structuring
of student´s knowledge [22]. It is focused not only on practical applications of ICT for
learning and knowledge but also on the theoretical basis of ICT and Informatics. The
Informatics and ICT domain is concentrated on three main topics:

• digital technology;
• information sources and searching information, using commonly available

services of information networks (Internet, data, information, information
systems, e-learning, ethical aspects of communication, copyright, personal
data protection);

• and information processing and presentation (multimedia, algorithmic
approach to solving problems, document publishing, typographical editing),
databases, modelling, simulations, algorithms and programming languages.

The preparations to include Informatics and ICT into a state part of the graduation
secondary school-leaving exam for which there has been developed a catalogue of
requirements, demonstration exercises and tests ([2], [3], [16]) emphasise the
importance of the educational domain, Informatics and ICT, in gymnasium education.

2 Teachers of subjects oriented on Informatics and ICT

The majority of teachers of subjects oriented around Informatics and ICT in basic
schools or gymnasium in the Czech Republic are university graduates with a
pedagogical specialisation. In spite of the fact that, in Czech schools, women are in
the majority, in basic schools the representation of both male and female teachers of
Informatics and ICT education is equal [20, p. 331]. Subjects focussed on ICT and
Informatics at basic schools are taught by teachers with a teaching qualification in

science, mathematics, informatics, social science or primary education. At the
gymnasium these subjects are taught mainly by teachers qualified in informatics,
mathematics, physics or technical education (computer science). There are
fundamental differences between schools in what pupils do in ICT or Informatics
lessons, what and how they learn these subjects. Teachers, their expertise and
experiences are the most important factor for decisions as to which topics from ICT,
Informatics or computer science will be taught (or learned). The teachers qualified in
Informatics or teachers who have been programmers for computer companies struggle
to implement the basics of programming into ICT education; for this purpose, they
use Baltik, Baltazar, Imagine or KAREL as an example of educational programming
languages [7]. The majority of teachers of ICT or Informatics at basic schools
consider algorithmisation and programming as a marginal educational activity. This
was established from a research study in 2007 at more than 900 basic schools in
which the research team explored teachers´ preferences for teaching ICT topics.
Among 14 items of ICT topics the teachers ranked algorithmisation and programming
13th just ahead of the introduction into working with database system and database
design [15, p. 22]. The experiences of ICT student teachers gained during teaching
practice in schools confirm that pupils in basic or secondary schools only very
seldomly learn programming [7].

3 Information education in ICT teacher education

The Faculty of Education in Prague has ICT teacher education in the bachelor´s and
master´s study programmes: “Information and communication education,” and
“Technical and information education” which derived from reflections on the
experiences of teaching of compulsory pedagogical ICT courses (see Table 1)
integrated into a five- years study programme “Technical and Information
Education”. In these pedagogical courses there have been developed didactic-
methodological competences of ICT student teachers required for ICT and
Informatics subjects at basic and secondary schools. The graduated ICT teachers are
expected to be able to support teachers at schools to apply ICT in their teaching and
actively participate in a transformation process of educational school environment
into a modern educational institution.

Table 1. A list of compulsory pedagogical ICT courses implemented into a five-year master´s
degree study programme “Technical and information education”

Semester Course
8th semester ICT in education
9th semester Systems for open teaching
10th semester Pedagogy for information education

3.1 Pedagogical courses focused on information education

Although the educational content defined in the curriculum [21], [22] is common
ground for the above-mentioned pedagogical courses in Table 1, these courses are not
concentrated just on particular (or typical) “the most appropriate” methodological
approaches on how to teach each individual topics in ICT educational domains. These
courses serve as a platform to investigate and search for and examine non-traditional
teaching methods suitable for the teaching of ICT and informatics subjects and for
information education in schools. These courses give the opportunity to develop
competency in pedagogical content knowledge [9] as an important component of a
teacher´s professional skills. Designing new pedagogical approaches the ICT student
teachers must apply knowledge and skills gained in pedagogical, psychological and
other professional branches and experiences from teaching practice.

In these pedagogical ICT courses, we endeavour to concentrate on the knowledge
of instructional methods as a key component of pedagogical content knowledge1 [12].
ICT development is extremely dynamic and it will be reflected in the educational
content and in the role of ICT and informatics subjects in schools. Therefore, it is
important that ICT student teachers are able to transform and adapt a new content
“into shapes which are from the pedagogical point of view efficacious and tailored to
pupil´s abilities” [23, p. 15].

ICT can be implemented into school education in three fundamental ways:
A) ICT specialisation (ICT literacy, computer science, informatics);
B) Application of ICT in subject areas and infusing ICT across the curriculum;
C) ICT as a technological platform of educational environment and working

space of pupils/teachers (e-learning, cyber-learning, e-portfolio, personal
learning environment).

Table 2. Specifics of pedagogical ICT courses in ICT teacher education

Course Key questions Focus Assignments
A, B Design of methodological

approach on how to learn with
selected applets

B Video-measurement
A Design of teaching aids for use

in instruction of ICT topics

ICT in
education

Why integrate and use ICT in school
education?
How to apply ICT in school
education?

A Demonstration on how to teach
ICT topics without using
computers

Systems for
open teaching

How to make use of VLE, LMS as a
support for daily school teaching?

C e-learning course designed in
Moodle

Pedagogy for Concept of Information Education A Taxonomy of assignments for

1 Schulman [23] has introduced the concept of pedagogical content knowledge as „subject

matter knowledge for teaching“ (selection of topics, useful forms of presentation, analogies,
illustrations, examples, explanations and demonstrations) which “also includes an
understanding of what makes the learning of specific topics easy or difficult, including
knowledge about conceptions and misconceptions that students bring to the subject”. [17, p.
23]

ICT and Informatics subjects
A Analysis and evaluation of

textbooks for ICT and
Informatics subjects

information
education

specification
Process data-information-knowledge-
wisdom
Non-traditional teaching approaches to
information education (constructivism,
constructionism, inquiry learning,
wiki, collaborative activities)

A Samples of outcomes designed in
educational programming
languages

Pedagogy for information education is a key feature of ICT pedagogical subjects in

ICT teacher education at the Faculty of Education in Prague. Information education is
interpreted as a universal complete concept in which the implementation of computer
technologies should dominate regardless of the subject being taught. Information
education is education aimed at information and communication thinking
development needed for learning, knowledge process, creative activities and
collaboration in communities of learners. Information thinking can be applied in:

• Information acquisition and processing in knowledge structures’
development;

• Process development of a personal information space using knowledge and
skills from other branches;

• Solving problems of a creative nature demanding, in some cases,
computational thinking;

• Seeking answers for questions demanding algorithmic thinking or database
thinking, knowledge in programming or skills of how to use applications for
modelling or animation;

• Data processing using appropriate methods and computer applications with
the aim of testing a hypothesis;

• Learning with understanding using personal working space which integrates
computer technology, tools for sharing and communication to sources,
applications and experts and non-digitised study materials.

The ICT student teachers on these three pedagogical courses (see Table 2) work in
enduring two-member teams. For collaboration on given assignments they can use
any kind of technology including Moodle [18].

ICT in education:
This course is aimed to introduce ICT student teachers to the main functions and

fundamental ways of using ICT applications in teaching and learning from different
perspectives. The main emphasis is placed on both theoretical questions related to the
manner and techniques of using ICT in educational processes (including life-long
learning) and practical trials of particular models of how to integrate ICT at schools.

The key question WHY apply ICT in school education? serves as a starting point
(terminus a quo) for lessons with ICT student teachers. This question usually takes
them by surprise. ICT student teachers don´t expect this question. They can´t see their
life, study and work without computers; they represent a generation who has come
into a world full of computer technology [5]. In lessons we endeavour to identify the
real, undisputed, pedagogical potential of computer technology and to expose key
roles of ICT for the learning and teaching process. Student teachers frequently argue
that computer technology contributes and supports learners in easier understanding of
themes owing to its illustrative nature and that it makes teachers’ work easier (e.g.
comparison between written records and schematic drawing in geometry on the

blackboard and using computer applications). The ICT student teachers also highlight
the importance of ICT as a motivator for pupils to learn.

ICT student teachers need to understand the pedagogical potential and values of
ICT for learning and teaching: how and what computer technology serves in schools.
They should be able to argue for it makes sense ICT are inseparable from school
education and learning environment. ICT student teachers cannot use in their rationale
any hackneyed phrases. Understanding particular examples, which illustrate problems
that could not be solved without computer technology, facilitates their thinking about
the positive and real value of ICT in education.

Design of a methodological approach on how to learn with selected applets: In this
task ICT student teachers prove not only their professional knowledge related to a
problem illustrated by selected applets [19] but also the pedagogical competence to
design activities for pupils to be able to work with applets, to ask questions and to
understand and learn from illustrated processes. The tutorial material includes not
only instruction on how to manipulate with applets and theoretical explanations
needed for understanding the interactive model demonstrated by the applet but also a
set of tasks, questions, activities and working sheets dedicated to pupils. The thing
that appears to be the most difficult for ICT student teachers is asking questions and
the ability to formulate interesting activities for pupils. In many cases, the reason is
that they do not understand the applet from a professional point of view.

Video-measurement: The main reason why ICT student teachers do this activity is
to show them how they can collect and analyse data for measurement using a digital
camera and also to give them a chance to try an example of inquiry-based learning.
Using a digital camera students record an appropriate object being in motion. They
adapt the digital record using the appropriate SW (e.g. AVISTEP), analyse a time
course of fundamental kinematic quantities and test their hypothesis [13].

Demonstration of how to teach ICT topics without using computers: What is
typical for youth of today the so-called, “digital generation,” is immediately after they
are given a problem, they use mobiles or the Internet to seek counsel or help [1]. The
notion of teaching some topics (ICT or Informatics subjects) without using computers
or out of computer labs astounds the majority of our ICT student teachers. It is one
reason why we ask them to design lessons and activities for particular topics for ICT
and Informatics subjects without using computers - using real models and teaching
aids. In such cases, we draw inspiration from YouTube (e.g. [4]) or in manuals and
tutorials for teaching of other subjects.

Systems for open teaching:
The aims of this course are to introduce ICT student teachers to the theoretical

underpinning of using ICT as a virtual educational environment and to enable
students to try in a practical way some teaching models arranged in virtual
environment, to design and create their own educational situations using technology
of different types for communication and collaboration, educational content
distribution, motivation pupils and teaching and learning assessment. Great emphasis
is placed on a constructivist approach to learning organised in virtual education
environment applications (see Table 3). A theme about learning objects and learning
object repositories is also included in this course. ICT student teachers are primarily
familiar with Czech portals [14]. Attention is given also to copyright and adherence to
ethical rules (copyright, licence, etc.) when using different types of materials.

The theoretical part of this course is dedicated to explanation of the e-learning
concept and how ICT can support fundamental processes important for learning
(learning content distribution, communication, collaboration, feedback, etc.). A
competition (who can find the highest number of e-learning concepts) stimulates and
motivates ICT student teachers to read and think about e-learning. The concepts are
then discussed in seminars. The competition is organised in Moodle and it also serves
as an example of how to motivate and stimulate on-line students. In this course, ICT
student teachers are introduced in main characteristics of virtual learning
environments (VLE) and learning management systems (LMS) to support and
manage education and the functions and services for learners, tutors, course designers,
and administrators of Moodle. The students look for inspiration and drawing a lesson
in analysis and evaluation of e-learning courses and activities for children offered by
various companies and institutions.

In the course, we focus primarily on Moodle through which ICT student teachers
design their own on-line courses and to criteria on how to evaluate e-learning courses.
At the end of the course, each author team presents its Moodle course. During their
university studies, some students work in schools as non-qualified teachers develop
their Moodle courses for their teaching with pupils in schools and they present not
only a Moodle course but also gain some personal experience with Moodle in schools.

Table 3. Main topics of "Systems for open teaching"

Topic Theme
Introduction Theoretical management basis of VLE and LMS. Basic

concepts.
e-learning as a model
of open teaching in
school practice

ICT for learning support. Teacher's activities and the role in
instructions with on-line support. Pupil´s activities in ICT
support learning. Advantages and disadvantages of on-line
support of F2F education in schools.

Technologies for e-
learning in school
practice

Technologies for educational content design and distribution
via networks. Technologies for collaboration in networks.
Technologies for synchronous and asynchronous
communication, collaborative activities via networks.
Example of using video-conference for education (activities,
sharing SW)

Computer systems
for management of
pupil's learning

Examples of commercial and Open Source VLE/LMS for full-
time F2F education

Introduction to
Moodle

Main characteristics and options of Moodle for different
groups of users. Introduction to particular Moodle functions
and tools for designers and teachers.

Assignment:
Scenario
Moodle course
design

Scenario design project for e-learning in which it could be
applied to LQs and different technologies to support pupil's
learning. Criteria for e-learning course evaluation.

Moodle and its educational potentialities: Most of the exercises given to ICT

student teachers in the course, “Systems for open teaching,” are included with the aim
to give students the opportunity to practise some specific and interesting learning

activities in Moodle. A Glossary is one of them. During the semester, students
develop a glossary of concepts related to e-learning and systems for open teaching.
Each student publishes explanation of concepts including bibliographic references,
links and resources. Students make remarks and comments to all published concepts
and discuss them. Database is another very interesting activity which we train with
ICT students, for example, when they look for events in “on-line live transmission”
suitable for education (e.g. scientific expedition in the Antarctic, watching a life of
animals, ZOO).

Moodle course design: e-learning courses design in Moodle is an opportunity to
contribute to student teacher’s pedagogical competencies’ development. Student
teachers elaborate a scenario of their Moodle course in which they describe a target
group to which the course is dedicated, course aims (what on-line learners have to be
taught), a course structure, a way how to work and study in the course, if there will be
a tutor or not, if the course will support school activities in formal education or
learning activities as a part of informal education.
Some outcomes and issues:

Students can opt for a topic of their Moodle course from disciplines and
specialisations of their studies. Since 2004, there have been developed more than 60
on-line courses for various school subjects: ICT (31%), Math (19%), Visual Arts
(17%), Social Science (14%), or Languages (10%). They differ not only in quality,
but also in structure, number of sections and design [6]. The most common
components are study materials (14.4 materials/course), assignments (usually 9
assignments per course), tests and cross-word puzzle in HotPotatoes. Lectures or
database activities have very seldom been implemented. The student teachers gained
step-by-step experience with on-line activities at the Faculty of Education. They see
the role of discussion forums in the educational process therefore the number of
discussion forums involved in their course design has diminished [6].

Some students have developed flash animations for better understanding of study
materials of on-line courses. Constructivist approaches to pupil learning prevail in
courses designed by Mathematics and Art Education student teachers.

Not all on-line courses created by student teachers are done well. During the on-
line courses development the student teachers are faced with different types of
problems:

• There is no theory on how to design e-learning courses for children. Course
designers develop their on-line courses intuitively.

• Student teachers cannot verify their on-line course with pupils. In the course,
“Systems for open teaching,” there is no time to test designed Moodle courses
in schools with children or to enable student teachers to try the role of on-line
teacher; therefore, they have no experience of how to integrate ICT into a
teacher daily planning (how to organise work, etc.). Nevertheless, some
students exploit their Moodle courses for research activities in their diploma
thesis, which means they get feedback to what degree the on-line course fulfil
its function.

• ICT student teachers make a lot of mistakes in assignment formulation; most
of them aren´t good at asking questions to pupils and articulating interesting
problems. We could meet with this incompetence in “ICT in education”
course. Although student teachers have completed a compulsory course how to

construct tests they still have a lot of difficulty in formulating high-quality test
questions.

• ICT student teachers are not sufficiently competent to design on-line courses
with a constructivist approach. These professional abilities prevail mainly
among Mathematics and Art Education student teachers. The most likely
explanation lies in the teacher education ideas and approach of the Department
of Art Education and the Department of Mathematics Education where very
sensitively constructivist approaches are applied in all courses.

• Some ICT student teachers lack good professional knowledge. Our
experiences indicate that designers who don´t understand a topic are not able
to develop a good on-line course.

• Although student teachers are taught to apply copyright and licences in their
on-line courses, they do not very often respect these principles.

Pedagogy for information education:
This course is focused on pedagogy-methodological questions for teaching of

compulsory or facilitative ICT and Informatics subjects at basic or secondary schools.
The main emphasis is on non-traditional teaching and learning methods (wiki, inquiry
learning, etc.). Information education and its components serve as a starting point for
contemplation on how to transform data into information and information into
knowledge. Students analyse and evaluate textbooks used in schools for ICT
education. Attention is given also to programming languages – we don´t discuss about
which language is the best one, we try to identify all positive arguments as to why it is
important to programme in the basic or secondary schools. Student teachers are
introduced into Imagine and Scratch programming. The course does not serve as a
course of introduction into programming, but as a platform to facilitate understanding
of Logo culture in a sense described by professor Ivan Kalaš [10] and comprehension
of the importance of algorithmic thinking development as an integral part of
information and communication thinking and computer culture in the education of a
new generation of pupils.

Table 4. Main topics of "Pedagogy for information education"

Topic Theme
A concept of Information Education
A concept of information

Explanation of two key concepts:
information education and information
Data-Information-Knowledge-Wisdom
Knowledge structure (concept mapping)
Database thinking. Information thinking

Information education in curriculum ICT in Curriculum for basic education
ICT and Informatics in Curriculum for secondary
school education

Teaching methods suitable for
information education

Constructivism. Constructionism.
Wiki. Inquiry Learning

Taxonomy of assignments for ICT
and Informatics subjects

Assignment analysis and evaluation.

Analysis and evaluation of textbooks
for ICT and Informatics subjects

Textbook analysis and evaluation.

Algorithmisation and programming Educational programming
Logo. Imagine. Scratch.

Conclusion

Experiences acquired from these three pedagogical courses in teacher education
could be applied to the new strategy of ICT teacher education at the Faculty of
Education in Prague which proposes to introduce five pedagogical courses focused on
information education into two-year Masters’ degree study programmes. In the
implementation of this new concept of ICT teacher education we would like to pay
deep and comprehensive attention to the analysis of professional knowledge and skills
of ICT student teachers and to interconnect these five courses with their teaching
practice. We plan to introduce e-portfolio as a tool for monitoring and assessment of
their professional progress and for the identification of problems in their
undergraduate education. In the pedagogical training of ICT teachers we would like to
reflect particularities, specificities and the needs of ICT teacher profession. As for
knowledge of instructional methods as a key component of pedagogical content
knowledge in ICT teacher professional competence, we are at the beginning. For ICT
and Informatics subjects, the analysis of knowledge database needed for teacher
professional knowledge does not currently exist.

References

1. Brown, J.S. Learning in the Digital. In the Internet and the University : Forum (2001). pp.
71-72.

2. Informatika. Základní úroveň obtížnosti. Katalog požadavků zkoušek společné části
maturitní zkoušky platný od školního roku 2011/2012 [on-line]. CERMAT, 2010. [cit.
25.3.2011]. Available on <http://www.novamaturita.cz/katalogy-pozadavku-
1404033138.html>

3. Informatika. Vyšší úroveň obtížnosti. Katalog požadavků zkoušek společné části maturitní
zkoušky platný od školního roku 2011/2012 [on-line]. CERMAT, 2010. [cit. 25.3.2011].
Available on <http://www.novamaturita.cz/katalogy-pozadavku-1404033138.html>

4. Computer Science Unplugged. http://video.google.com/videoplay?docid=-
5129662873097337591#

5. Conole, G. A holistic approach to designing for learning: a vision for the future [on-line].
[cit. 25.3.2011]. Available on <http://www9.code.ouj.ac.jp/sympo-
2010/report/pdf/06_conole_en.pdf>

6. Černochová, M. Návrh a vývoj elearningových aplikací jako příležitost k rozvíjení
pedagogických kompetencí budoucích učitelů. In Sborník DIDINFO2008. L.Huraj (ed.)
Univerzita Mateja Bela, Fakulta prirodných vied, Banská Bystrica, 2008. p.25.

7. Černochová, M. Teaching practice from the perspective of ICT student teachers at the
Faculty of Education, Charles University in Prague. In Key Competencies in the Knowledge
Society. IFIP TC 3 International Conference, KCKS 2010. Held Part of WCC 2010
Brisbane, Australia, September 2010, Proceedings. N. Reynolds, M.Turcsányi-Szabó (eds.)
IFIP AICT 324. ISSN 1868-4238. Springer, Printed in Germany. pp. 44-55.

8. Dede, C. Theoretical perspectives influencing the use of information technology in teaching
and learning. In J. Voogt, G. Knezek (eds.) International Handbook of Information
Technology in Primary and Secondary Education. Springer, 2008. pp. 43-62.

9. Janík, T. Didaktické znalosti obsahu a jejich význam pro oborové didaktiky, tvorbu kurikula
a učitelské vzdělávání. Paido : Brno, 2009.

http://www.novamaturita.cz/katalogy-pozadavku
http://www.novamaturita.cz/katalogy-pozadavku-1404033138.html>
http://video.google.com/videoplay?docid=
http://www9.code.ouj.ac.jp/sympo

10. Kalaš, I. et al. Konštrukcionizmus, od Piageta po školu v digitálnom veku [CD-ROM]. In
Sborník DIDINFO 2011. Invited Papers. G. Andrejková (ed.) Univerzita Mateja Bela,
Fakulta prirodných vied, Banská Bystrica, 2011. pp. 7-19.

11. Katedra informačních technologií a technické výchovy, PedF UK v Praze.
http://it.pedf.cuni.cz

12. Krauss, S. et al. Pedagogical Content Knowledge and Content Knowledge of Secondary
Mathematics Teachers. Journal of Educational Psychology, 2008, 100(3), 716-725.

13. Lustigová, Z. Záznam pohybu a jeho zpracování (AVISTEP aneb fyzika s videem). [on-
line]. [cit. 25.3.2011]. Portál Telmae. MFF UK : Praha, 2009. Available on
http://telmae.cz/Experiments/lectures.nsf/0/348CFE980C7821C78025739F0051D4E7.

14. Metodický portál. RVP. Portál DŮM. http://dum.rvp.cz/index.html
15. Mudrák, D. et al. Dotazníkové šetření aspektů informační výchovy na ZŠ. In

POŠKOLE2007. Sborník Národní konference o počítačích ve škole. M. Černochová, I.
Fialová, B. Mannová (eds.) Praha, 2007. pp. 15-28.

16. Nová maturita. http://www.novamaturita.cz.
17. OECD Teachers´Professional Development. Europe in international comparision. Teaching

and Learning International Survey. EU : Belgium, 2010.
18. Online kurzy. Univerzita Karlova v Praze Pedagogická fakulta. http://moodle.pedf.cuni.cz
19. PhET. Free Interactive Simulations. http://phet.colorado.edu/index.php
20. Rambousek, V. et al. Výzkum informační výchovy na základních školách. Koniáš : Plzeň,

2007.
21. RVP ZŠ Rámcový vzdělávací programme pro základní vzdělávání. VÚP : Praha, 2007.
22. RVP GV Rámcový vzdělávací programme pro gymnaziální vzdělávání. VÚP : Praha, 2007.
23. Shulman, L.S. Knowledge and teaching: Foundations of the new reform. Harvard

Educational Review, 1987, 57, pp.1-22. Cited in JANÍK, T. Didaktické znalosti obsahu a
jejich význam pro oborové didaktiky, tvorbu kurikula a učitelské vzdělávání. Paido : Brno,
2009.

24. Na středních školách se začal naplno projevovat demografický pokles, na základních
školách se pokles žáků částečně zastavil [on-line]. [cit. 24.4.2011]. Tisková zpráva. ÚIV :
Praha, 31. srpna 2010. http://www.uiv.cz/soubor/4330

http://it.pedf.cuni.cz
http://telmae.cz/Experiments/lectures.nsf/0/348CFE980C7821C78025739F0051D4E7
http://dum.rvp.cz/index.html
http://www.novamaturita.cz
http://moodle.pedf.cuni.cz
http://phet.colorado.edu/index.php
http://www.uiv.cz/soubor/4330

Status and Trends in Educational Robotics Worldwide
with Special Consideration of Educational Experiences

from Greek Schools

Nikolaos Detsikas & Dimitris Alimisis,

 School of Pedagogical and Technological Education (ASPETE), Achaikis Simpoliteias 20,
26441 Patra, Greece

detsikas@gmail.com
alimisis@otenet.gr

Abstract. Teaching programming concepts to novice learners and particularly
school students is often a difficult task for numerous reasons. Innovative
technologies, and specifically robotics, have allowed for constructivist theories
to be applied in that cause with encouraging results. This work describes
educational initiatives involving the use of robotics throughout the world with
special focus on educational experiences coming from Greece. In addition to
that, a case study is presented in which robots built with Lego Mindstorms kits
were used in a Greek secondary education school classroom of informatics to
support the learning of decision and repetition control programming structures.

Keywords. Robotics, constructionism, LEGO Mindstorms, programming,
control structures.

1 Robotics in education at an international level

1.1 Projects and activities in school settings

Modern technology tools can be used in school classrooms to promote the teaching
and learning processes. In order for technology to be adopted effectively in the
context of the above cause, suitable learning theories have to be employed.
Educational robotics, being inspired by the theory of knowledge construction
(constructivism, [1], focus on the constructivist use of educational technology
(constructionism) as learning tool [2]. According to the constructivist view, the
process of learning should include authentic activities regarding the solution of real
world problems and encourage a strong personal involvement by the learners as well
as social interaction. In addition to that, constructionism suggests that learners build
knowledge more effectively when they participate in activities in which they design
and implement objects of the real or digital world, either they are sand castles or Lego
robots and computer programs (Papert, 1992).

2 Nikolaos Detsikas & Dimitris Alimisis,

Throughout the world, many educational projects and activities have taken place in
the past years, involving robotics either as a learning object or as a learning tool,
though the distinction of the two meanings is not always clear. Some of the most
important of these initiatives, varying from classroom activities to competitions and
exhibitions, are summarized here.

The Lifelong Kindergarten group, located within the MIT Media Lab
(http://llk.media.mit.edu/) aims at using new technologies and a kindergarten style of
learning to help people of all ages learn through playful activities. The people that
participate in the projects learn by designing, creating, experimenting and exploring,
in a variety of activities ranging from engineering to drawing and constructing
melodies projects. Many of the projects involve robotics like the Interactive C and
Learning Engineering by Designing Robotics.

The Science, Engineering, NASA Site of Remote Sensing (SENSORS) project was
an effort towards introducing upper elementary and middle school audiences to tele-
robotics and remote sensing. The robots were rover vehicles based on LEGO RCX
units and were remotely controlled by the students through the WWW.

Significant initiatives have taken place in Italy an example of which is the
Robot@Scuola network. Robot@Scula is a network of Primary and Secondary
Professional and Vocational Education schools that use robotics in their teaching
processes (http://www.scuoladirobotica.it/progettieng.htm).

Another example is The PIONEER (PIedmOnt NEt for Educational Robotics)
project which is also an Italian schoolnet for the educational use of robotics in school
classes. Its goal is to promote Papert's constructionism in a cooperative environment
for setting up a model of minirobot programming experiences that can support the
standard curricula for school years K-12 [3].

[4] describes the efforts undertaken by a small community of teachers towards
boosting science education in the school district of Verona (Italy) by promoting
constructivism with the help of various configurations of robotic devices. These
efforts have been going on for the last eight years, slowly gaining momentum and
impact. They emphasize that the most striking difficulties have been encountered with
the educational environment rather than with students themselves.

The Roberta-Goes-EU project (http://www.iais.fraunhofer.de/3845.html) aspires to
encourage young people, and especially girls, through Robotics to take up engineering
studies, providing training courses and comprehensive teaching materials to teachers
and others who wish to increase students’ enthusiasm for technical professions.

The Computers in Education Group of South Australia (CEGSA) suggests the use
of Bee-Bots http://cegsa.editme.com/EDET3302-BeeBot#uses) and Lego Robotics
WeDo (http://cegsa.editme.com/EDET3302-LegoRoboticsWeDo#uses) in classrooms
Bee-bots are programmable floor robots designed for young children (4-7 years).
They can be used in the teaching of many curriculum areas including arithmetic,
literacy, arts and science. Similar uses and classroom scenarios are suggested for
older students (7-11 years) with the use of he Lego Robotics WeDo kits.

As described in [5], three	 higher education initiatives have taken place in Sri
Lanka, Ghana, and the USA. The project focused at integrating robotic technologies
in developing communities, studied the future involvement of robotics in education

Status and Trends in Educational Robotics Worldwide with Special Consideration of
Educational Experiences from Greek Schools 3

and their ability to contribute to sustainable development. The work presents the
challenges faced as well as the benefits of the activities and the factors that
contributed to their success.

The use and effectiveness of robotics in the teaching of other scientific topics has
also been demonstrated by [6]. Their work describes an educational activity based on
robotics and compares it with a similar computer-simulated activity. The subject was
related to the study of graphs and kinematic concepts. The activity was carried out
with the use of a set of handheld devices and a robot with a wireless connection. The
robotic activity proved to be almost twice as effective as compared with the
computer-simulated activity, since the results showed that students demonstrated
significant better understanding of the graph concepts. Moreover, the robotic activity
proved to be highly motivating for the students and fostered collaboration among
them.

There are also numerous research efforts that have focused on the integration of
Robotics in Early Childhood	 Education with the design, development and practicing
of attractive activities with digital technologies at preschool age [7], [8].

Educational projects targeting technical and vocational school students have also
taken place, engaging them in designing, building and programming a robotic device
that allowed them to explore phenomena of mechanics like the gear-aided
transmission	 of motion [9] or the gear function and mechanical advantage [10]. [11]
describes a project-based learning environment in which various robotic construction
tasks based on LEGO Mindstorms have been undertaken by middle-school students
and highlight some sample products of their work.

Finally, the use of robotics in the teaching of computer programming concepts,
from elementary ones to most advanced, has been explored and attempted numerous
times. The famous Logo turtle has been widely used to support the first steps towards
programming for many young students throughout the world. Similarly, Karel the
robot [12], a robot with built-in capabilities that allow it to move in its world and
manipulate simple objects in it, has been instructing students in the practice of
programming since 1981. In addition to that, [13] argues about the benefits of using
robots (Lego Mindstorms) in the teaching of object-oriented languages and provide
sample exercises. The appeal of computer controlled models in teaching programming
with the Java language has been studied by [14].

2 TERECoP Project and new European initialives

The TERECoP Project (2006-09) (Teacher Education on Robotics-Enhanced
Constructivist Pedagogical Methods, www.terecop.eu), takes a different view in the
involvement of robotics in education. Spanning over 8 educational institutions and 6
European countries (Greece, Spain, Czech Republic, Italy, France and Romania) and
coordinated by ASPETE (School of Pedagogical and Technological Education) in
Patras, Greece, it focuses on teachers’ training in the effective introduction and use of
educational robotics in school classrooms.

4 Nikolaos Detsikas & Dimitris Alimisis,

The TERECoP Project distinguishes robotics projects and activities in two
categories according to the role that robotics play in the learning process:

• Robotics as learning object: where robotics is being studied as a subject on its
own.

• Robotics as learning tool: robotics is proposed as a tool for teaching and learning
other school subjects at different school levels. Robotics as learning tool is usually
seen as an interdisciplinary, project-based learning activity drawing mostly on
Science, Mathematics, Informatics and Technology and offering major new
benefits to education in general at all levels.

The TERECoP partnership has developed a training methodology for future and in-
service teachers aiming to engage them in robotic activities that they could implement
in a creative way with their own students. The proposed course curriculum, being
consistent with the proposed use of robotics as a tool for constructivist learning, is
meant to train teachers in the same way in which they are expected to educate their
school students.

Teacher training courses have been taking place in several European Countries
participating in TERECoP since October 2007. The courses were evaluated by the
TERECoP partnership. The trainees have been prospective and in-service teachers.
The LEGO Mindstorms ΝΧΤ system (http://www.legomindstorms.com) was selected
among others as an appropriate technological framework that attempts to partner
technology with the ideas of constructionism.

The pilot course curriculum (Alimisis, Moro, Arlegui, Pina, Frangou, &
Papanikolaou, 2007) included briefly the following sections (30 hours):

• “Breaking the ice” introductory activities and agreement on a "didactic contract"
• Robotics as learning object
• Constructivism, Constructionism and project-based learning principles
• Robotics as a learning tool

The TERECoP training activities are also consistent with the idea of “learning by
design”. The learning tasks of the course are organized as small or large scale
robotics projects enabling trainees to design and develop their own products. All the
training materials, guides for trainers and teachers, exemplary robotics projects and
other resources have been included in a book co-authored by the TERECoP
partnership [15].

The continuously increasing interest in Educational Robotics was confirmed in the
Workshop organized at the SIMPAR Conference 2010 held in Darmstadt, Germany
(http://www.terecop.eu/SIMPARworkshop.htm). Researchers and practitioners from
12 European Countries (plus participants from Brazil, Japan, Panama and USA)
participated in the workshop, which demonstrated both the diversity and similarity of
European and international education robotic projects represented by very simple
robots suitable for kindergarten to very complex ones for higher education.

New plans for future initiatives were presented in the workshop, among them the e-
Robot project which aims to investigate educational robotics principles through a
longitudinal on-line research collaboration and to set up a community-based online

Status and Trends in Educational Robotics Worldwide with Special Consideration of
Educational Experiences from Greek Schools 5

research collaboration that will inspire, gather data and collate multiple research
projects using the Roamer® robotic system [16]. The event concluded that
cooperation at European Level would offer great benefits by enhancing the existing
expertise in the field. Suggestions to this direction were discussed for future joint
activities including new workshops on educational robotics within the major robotics
or education conferences, contacting and lobbying to governmental education
authorities in order to integrate robotics in school curricula, submission of proposals
for funding a network at European level to bring together the different initiatives and
competitions, to exchange experience, to coordinate the relevant activities and to run
long-term evaluations [17].

3 Robotics in Education in Greece

3.1 Projects and activities in school settings

Several innovative educational activities have been designed and attempted in
Greek schools at all levels in the past years, involving robotics.

Teachers who have been trained by the TERECoP partnership were encouraged
and supported to introduce robotics in their classrooms in a variety of activities and in
different school subjects. For example, [18] following the methodology developed in
the TERECoP Project, designed and executed an educational activity for the teaching
of computer science, physics and technology topics in informatics school courses. The
activity involved the design and programming of a catapult device with the use of
Lego Mindstorms Robotics kit.

A pilot program for the introduction of robotics in schools of Athens was realized
during April-May 2010 by a consortium consisted of the non-profit organization
World Robotics Olympiad Hellas, the Athens Municipality and the Educational
Technology Lab of ASPETE in Patras, Greece following the TERECoP methodology.
68 pupils aged 11-14 years from 6 schools (3 primary and 3 lower secondary ones)
located in 6 different areas of the Athens city centre participated in the program. The
educational objectives of the program included the familiarization of pupils with
robotics technology, the acquirement of technological skills in mechanical
construction and in programming, the cultivation of valuable mental skills such as
creativity and critical thinking and the development of teamwork and collaborative
spirit of work [19].

The reported results were in all the above cases encouraging and constituted the
integration of robotics in the standard curriculum of schools almost a necessity.

Other initiatives have also been undertaken in Greece. [20] have studied the use of
LEGO Mindstorms Robotics kit as an instructional tool in technical and vocational
secondary education. In the context of their study, a robot car was developed and
programmed, in order to be used in teaching Mechanical Engineering topics in classes
of the field. The study also describes the construction of the robot car and suggests a
course plan exploiting this technology.

6 Nikolaos Detsikas & Dimitris Alimisis,

[21] have carried out a research concerning the effectiveness of the use of robotics
in elementary school classes in teaching environmental issues. During the study, the
students have been involved in designing and building robots that could assist in
recycling, garbage collection and fighting water pollution. The project has shown that,
through the use of a teaching tool, as interesting and appealing to young students as
the robots are, the concern and interest of young people in environmental issues can
be increased.

It is worth noting the pilot projects realized by the Educational Technology Lab of
our School in Patras, which offer distance teacher training in educational robotics
based on the use of Synchronous Audiographic Conferencing. During those distance
training sessions, the learners were provided the opportunity to use distantly
programming software available only in the trainer’s computer in order to program a
remote robotic vehicle located at the trainer’s desk, download their program to the
robot and watch through a video-camera the reaction of the robot while executing
their commands sent distantly [22].

3.2 Educational Robotics in public events

WRO Hellas is a non-profit company whose aim is to promote the use of science,
modern technology and in particular robotics and automation in education and social
life. WRO Hellas is constantly active in educating all interested citizens, with a strong
emphasis on youngsters and students, in matters of technology and robotics and their
integration into social life. More information can be foun at www.wrohellas.gr (in
Greek).

WRO Hellas coordinates its efforts with the WRO (World Robotics Olympiad).
WRO is an annual international robotics competition, whose participants are young
students interested in robotics.

WRO Hellas has been organizing the “Panhellenic Educational Robotics
Competition” for the past three years. The “Panhellenic Educational Robotics
Competition” is an annual robotics competition, whose participants are students and
schools of all education levels, as well as all interested individuals. Participants build
robots and compete with each other on various scenarios.

WRO Hellas has also been organizing educational activities at schools of Athens
and other parts of Greece. During the class sessions, students, grouped into teams, had
been designing and implementing robots with the use of the Lego Mindstorms
platforms.

Finally, ‘Polymechanon’, located in Athens, Greece, is a recreation and exhibition
center that hosts multiple high technology games related to robotics informatics,
communications and virtual reality. ‘Polymechanon’ accepts visitors of all ages, but is
especially suited to school visits, during which students are involved in fun,
entertaining and educating activities with the high technology games that are
exhibited there [23].

Status and Trends in Educational Robotics Worldwide with Special Consideration of
Educational Experiences from Greek Schools 7

4 Case study: Using robotics to support the learning of control
structures in programming languages

4.1 Context

The traditional use of a blackboard and chalk in teaching various science topics at
school is often not enough to demonstrate the main ideas, key concepts examples and
applications. Particularly, in teaching Computer Science and informatics subjects
even the use of the standard computer programming environments and simulators is
often incapable to introduce the students to the new topics, since they appear too
abstract and out of reach to them at the beginning.

The teaching of the notions of programming to secondary school students, who
have little or even no prior programming experience, is a difficult task that involves
the use of specially designed computer programming environments adapted to the
students’ level. Students face a lot of difficulties in understanding the programming
concepts, as is shown by numerous studies [24]. In particular, as [24] describe,
“conditional statements”, in other words computer commands that control the flow of
execution of a program, cause a lot of difficulties to students.

There are many reasons for these difficulties the most frequent of which are pre-
programming knowledge that leads to misconceptions and programming languages
that are usually too advanced for novice learners. It is also of great importance the
fact that the problems that students are called to solve in their initial programming
steps, such as mathematical problems, are often inadequate for teaching purposes. On
the contrary, meaningful computational models able to provide immediate feedback to
their programmers [25] are more appropriate for educational purposes.

It quickly becomes evident that apart from the programming environments that are
often used in the computers of secondary school computer laboratories, less abstract
teaching tools and activities should also be incorporated to introduce students to the
ideas of programming.

The teaching of Computer Science and informatics in secondary Greek schools,
covers the topics of the standard programming control structures which are loops and
decision statements i.e. IF-THEN-ELSE, DO-WHILE etc. Since these programming
concepts are the fundamental part of meaningful programs, their understanding is
crucial to students.

Although the above structures can be taught with the use of various programming
environments in computers, their use can be made a lot more intuitive if robots are
incorporated into classrooms. Robots, such as moving vehicles, can be used to vividly
demonstrate repetitive behavior and also changes in behavior according the external
conditions observable by students.

A method of programming the robots is also essential in the above process of
teaching these programming concepts. It is absolutely necessary that this method or
environment is simple enough for students without significant prior programming
knowledge to understand and use. Otherwise, instead of aiding, the above process
would add an extra difficulty in the course of understanding control structures, which
would be the difficulty of learning the robot-programming environment.

8 Nikolaos Detsikas & Dimitris Alimisis,

Lego Mindstorms, which were introduced in 1999, is a great tool that fulfills the
requirements of the activity described above. Lego Mindstorms extend the idea of
standard Lego kits with the use of sensors and motors and a programmable unit called
“the brick”. The brick accepts input from the sensors and sends commands to motors
according to the logic it has been programmed with. The variety of sensors available
(sound, light, ultrasonic, collision etc.) combined with the ability to use multiple
motors, allows for very complex and interesting designs from moving vehicles to
robots with moving limbs.

Lego Mindstorms programming environment allows for students to program very
simple to very complex robot behavior without writing any code. Instead, commands,
statements and structures are represented by graphical blocks, which can be combined
into programs with the well-known drag-n-drop method. Their parameters, whenever
needed, can be selected in drop-down menus. Therefore, it becomes evident, that the
skills needed by students in order to use the Lego Mindstorms environment are
already present in them due to their experience of computers in the school computer
laboratory and possibly from everyday use.

The robotic activity can greatly motivate students to participate in it since it gives
them the opportunity to get involved in a palyful task which is meaningful to them
and has a strong playful character. Allowing the students to think of their own robotic
behaviour, according to the principles of constructionism, enables them to create their
own little stories and become part of them.

4.2 Activity

This section describes a teaching activity that was carried out to secondary school
students, in the context of the Computer Science class. The activity took place in the
school computer laboratory.

The goal of the activity was to aid the teaching of decision and repetition
statements in programming, with the use of robots. Robots, appropriately
programmed, can perform simple actions, which can demonstrate the use of decisions
and repetitive behavior in programs.

The robots used in this activity were simple cars with four wheels, one motor and
one ultrasonic sensor. The motor was attached to the front wheels. The car lacked the
ability to turn, which was not necessary for the simple projects demonstrated in the
class. The ultrasonic sensor could measure the distance to nearby objects. The motor
and sensor were both connected to the robot-processing unit (“the brick”), the first to
an output port and the second to an input port.

Since the activity focused on the programming concepts, constructing the robots
was beyond its scope. In addition to that, the available time was very limited.
Therefore the robots that were finally used in the classrooms were all constructed in
advance.

Nevertheless, beside the standard Lego parts, the building blocks of the robots, i.e.
the motor, sensor and brick, as well as the connections had to be explained to
students. Students were also explained the flow of information from the sensor to the
processing unit and then to the motor. In addition to the above, the students were also

Status and Trends in Educational Robotics Worldwide with Special Consideration of
Educational Experiences from Greek Schools 9

demonstrated the basic operating instructions of the processing unit, in other words
how one can start it and stop it.

Students were also shown the programming environment that accompanied the
Lego Mindstorms robots, which was also installed in their computers. Through
examples, the basic building blocks of a program (move, wait, conditional wait, loop,
switch etc.) were explained to them along with the steps necessary to build a program
and download it to the processing unit installed on a robot.

The examples presented to the students, were those of a robot moving forward until
it detects an object at a certain distance and of a robot moving forward and backwards
for a certain number of times. The examples involved the whole process of
constructing the program, building it, downloading it to the robots, executing and
verifying that the robot behavior was actually the one programmed.

This concluded the first part of the activity, which was the introduction to the
notion of robot programming.

Students were asked to freely think of a behavior, involving decision making
and/or repetition and then describe it using paper and pencil before programming it to
their robots in the second part of the activity. They were grouped into five teams of
three to four persons and each team was given a robot to execute its programs on. At
the end of activity, the groups were asked to present the behavior they thought of and
demonstrate it with their robots in front of the whole class.

4.3 Results and conclusions

Students described the behaviors they thought of in their working sheets, as
requested. Although their actions resembled the ones presented by the instructors they
tried to deviate from them while still using repetition and conditional execution. As
results shown, conditional behavior was the most difficult and not always present.
Two indicative examples from the actions the students presented below, while the rest
of the projects were similar to these:

Case 1

1. The robot waits for 1 second
2. The robot moves forward forever at speed 100%
3. If the robot detects an obstacle 20cm away it stops
4. The robot moves backward at speed 75% for 2 seconds
5. The robots repeats steps 2-4 twice

Case 2

1. The robot waits for 1 second
2. Moves forward for 4 seconds
3. Moves forward for 2 seconds
4. Moves backward for 1 seconds
5. Repeats steps 3-4 twice

10 Nikolaos Detsikas & Dimitris Alimisis,

With some help from the instructors most groups managed to program the actions
to the robots with considerably little difficulty after some trial and error attempts.
Although all teams completed the activity, one of them did not use conditional
statements at all and another did not manage to program it effectively. Although the
SWITCH or CONDITIONAL WAIT blocks of the programming environment were
explained, students in many occasions had trouble to implement their thoughts on
their own and instructors had to describe the use of these blocks again according to
individual needs. The repetition proved to be less difficult but in some cases students
tended to repeat the action blocks by cascading them in the programs instead of
putting them in LOOP blocks.

At the end of the activity, the instructors collected the work sheets of the groups. In
addition to that, the programs the groups built were also collected. Students also
anonymously filled in simple questionnaires about the course of the activity, the
difficulties they faced and what helped them understand the discussed topics.

The collected feedback as well as the instructors observations in the classroom,
have verified the initial assumption that a robotics activity would be appealing to the
students and could be used successfully in bringing abstract concepts closer to the
students.

While working in the activity, students had the opportunity to gain experience and
take advantage of their own errors. In this manner, they were able to make their own
plan towards solving the problem and analyze every possible case and outcome.
While cooperating in their groups, they exhibited group thinking and team spirit.
Through the LEGO Mindstorms activities, students developed a better view of their
own learning abilities. The robot activity enabled them to see the results of their
actions and get immediate feedback, which increased their self confidence not only in
the cases of success but also in the error cases, since the learners could see their
mistakes and correct them. The above are better described by their reactions towards
the instructors after a final successful attempt, which were of the form “we did it!”,
“we were good, weren’t we?”, “It works! Do you like it?”, “What else should we
program?”. Often, they were willing to show their work to their friends and explain
them how they had done it and how they had programmed the robot.

Our role as teachers was also different from the traditional teacher role in the
classroom. We acted mostly as experienced advisors, encouraging the students
towards the solutions but not doing the work for them. We also had the opportunity to
discover the difficulties students faced when they worked out the new concepts, to
understand how students preferred to work and how they thought and felt and finally
to gain insights on how our future educational activities should be planned and
designed.

In general, programmable robots can be used as a preparation step into the actual
programming for young students but can also be used as simulators in Computer
Science courses in all education levels. They can also be instrumental in teaching
subjects involving physics, motion and mechanics.

This project constitutes a small-scale study and for that reason general conclusions
cannot easily be drawn from the findings. The areas that emerged in the analysis
raised new questions for exploration. The activity, as described here, should take

Status and Trends in Educational Robotics Worldwide with Special Consideration of
Educational Experiences from Greek Schools 11

place in more schools and classrooms. In addition to that, allowing for more complex
robot designs to be used in the activities, with more sensors and motors, will enable
learners to think of and program more elaborate actions, that will cover the aspects of
programming more extensively. Finally, the activities should be allowed to take up
more time than a few classroom sessions. This way, students will have the
opportunity to test more designs and programs and try harder to accomplish them. A
potential competition among the classes that participate in the activities might greatly
motivate students towards this direction.

References

1. Piaget, J.: To understand is to invent. New York (1974)
2. Papert, S.: The Children's Machine. New York (1992)
3. De Michele, S., Demo, B., & Siega, S.: A Piedmont SchoolNet for a K-12 Mini-Robots

Programming Project: Experiences in Primary Schools. In: SIMPAR 2008, Intl. Conf. on
SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS, (pp.
90-99). Venice(Italy) (2008)

4. Fiorini, P., Galvan, S., Giuliari, L., & Pighi, L.: It Takes a Village... to do Science Education.
In: SIMPAR 2008, Intl. Conf. on SIMULATION,MODELING And PROGRAMMING For
AUTONOMOUS ROBOTS, (pp. 43-53). Venice(Italy) (2008)

5. Dias, M. B., Mills-Tettey, G., & Nanayakkara, T.: Robotics, Education, and Sustainable
Development. In: 2005 IEEE International Conference on Robotics and Automation, (pp.
4248 – 4253) (2005)

6. Mitnik, R., Recabarren, M., Nussbaum, M., & Soto, A.: Collaborative robotic instruction: A
graph teaching experience. Computers & Education (2009)

7. Bers, M., Ponte, I., Juelich, C., Viera, A., & Schenker, J.: Teachers as Designers: Integrating
Robotics in Early Childhood Education. In: Information Technology in Childhood
Education Annual , pp. 123-145 (2002)

8. Pekarova, J.: Using a Programmable Toy at Preschool Age: Why and How? In: SIMPAR
2008, Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for
AUTONOMOUS ROBOTS, (pp. 100-111). Venice(Italy) (2008)

9. Alimisis, D., Karantrantou, A., & Tachos, N.: Technical school students design and develop
robotic gear-based constructions for the transmission of motion. In: Gregorczyk G., Walat
A., Kranas W., Borowiecki M.. (eds.). Eurologo 2005, Digital Tools for Lifelong Learning,
Proceedings, (pp. 76-86). Warsaw (2005)

10. Chambers, J., & Carbonaro, M.: Designing, Developing, and Implementing a Course on
LEGO Robotics for Technology Teacher Education. Journal of Technology and Teacher
Education , 209-241 (2003)

11. Carbonaro, M., Rex, M., & Chambers, J.: Using LEGO Robotics in a Project-Based
Learning Environment. The Interactive Multimedia Electronic Journal of Computer-
Enhanced Learning (2004)

12. Pattis, R. E., Roberts, J., & Stehlik, M.: Karel - The Robot, A Gentle Introduction to the Art
of Programming. New York: Wiley (1995)

13. Lawhead, B. P., Bland, G. C., Barnes, J. D., Duncan, E. M., Goldweber, M., Hollingsworth,
G. R., et al.: A Road Map for Teaching Introductory Programming Using LEGO
Mindstorms Robots. In: ACM SIGCSE Bulletin, (pp. 191-201). Reno, Nevada, USA (2003)

12 Nikolaos Detsikas & Dimitris Alimisis,

14. Barnes, D. J.: Teaching introductory Java through LEGO MINDSTORMS models. In:
Proceedings of the 33rd SIGCSE technical symposium on Computer science education,
ACM (2002)

15. Alimisis, D.: Teacher Education on Robotics-Enhanced Constructivist Pedagogical
Methods. ATHENS: ASPETE (2009)

16. Catlin, D., & Blamires, M.: The e-Robot Project: A Longitudinal On-Line Research
Collaboration to Investigate ERA Principles. In: Proceedings of SIMPAR 2010 Workshops,
(pp. 411-420). Darmstadt (Germany) (2010)

17. Bredenfeld, A., Hofmann, A., & Steinbauer, G.: Robotics in Education Initiatives in Europe
- Status, Shortcomings and Open Questions. In: Proceedings of SIMPAR 2010 Workshops,
(pp. 568-574). Darmstadt (Germany) (2010)

18. Vounatsos, G., & Mega, A.: The TERECoP methodology and LEGO Mindstorms in
secondary education: a case study. In: Proceedings of the 6th Panhellenic Conference on
ICT in Education. Syros (Greece) (2011)

19. Alimisis, D.: Introducing robotics in schools: post-TERECoP experiences from a pilot
educational program. In: Proceedings of SIMPAR 2010 Workshops, (pp. 575-585).
Darmstadt (Germany) (2010)

20. Moundridou, M., & Kalinoglou, A.: Using LEGO Mindstorms as an Instructional Aid in
Technical and Vocational Secondary Education: Experiences from an Empirical Case Study.
In: Dillenbourg, P. & Specht, M. (Eds.): Times of Convergence: Technologies across
learning contexts, Lecture Notes in Computer Science, Vol 5192, Springer-Verlag, Berlin
Heidelberg, 312-321 (2008)

21. Anagnostakis, S., & Makrakis, V.: Educational Robotics as a tool for technological literacy
and environmental sustainability: an action research with primary school pupils. In:
Proceedings of the 7th Panhellenic Coference on ICT in Education. (pp. 127-136). Univ. of
Peloponnese (2010)

22. Alimisis, D., & Plessas, A.: Teacher Distance Training in Educationl Robotics through
Synchronous Audiographic Conferencing: towards a Learner-centered Approach. In:
Proceedings of ED-MEDIA 2011-World Conference on Educational Multimedia,
Hypermedia & Telecommunications. Lisbon (Portugal) (2011)

23. Kynigos, C.: Black-and-white-box perspectives to distributed control and constructionism
in learning with robotics. In: SIMPAR 2008, Intl. Conf. on SIMULATION, MODELING
and PROGRAMMING for AUTONOMOUS ROBOTS, (pp. 1-9). Venice(Italy) (2008)

24. Doukakis, D., Tsaganou, G., & Grigoriadou, M.: Using animated interactive analogies in
teaching basic programming concepts and structures. In: Proceedings of the ACM
Conference on the State of: Informatics Education Europe II, (pp. 257-265). Thessaloniki
(Greece). (2007)

25. Guzdial, M.: Programming Environments for Novices (2003)

Thinking Informatically

Karl Josef Fuchs1 and Thomas Schiller2,

1 Paris Lodron University Salzburg, Hellbrunnerstr. 34,

5020 Salzburg

2 BG / BRG Ramsauerstraße,

4020 Linz

Abstract. The paper accommodates the move-in of basic informatical concepts
into schools. The discussion is focused on Modelling representatively. After
required theoretical inputs the article describes Modelling-aspects in an
instructional concept for character recognition. Referring to the instructional
conception the paper tries to catch a glimpse of evolutions in practice by a
slight questioning on Modelling. The views of the presentation are strongly
governed by the Austrian developments in secondary level education.

Keywords: Functional and Object Oriented Modelling, Secondary school,
Character Recognition, Students’ Perceptions of Modelling

0 Prolog

As teaching Computer Science has only been with the Austrian schools for a short
time of 25 years ([3], [11]) teaching has geared towards central informatical concepts
by and by in recent years initially. Some various characterizations and catalogues of
ideas ([2], [5], [13], [16]) have come to the fore. Modelling has evolved into a general
accepted strategy among Computer Science Educators.

1 The Prototypical Character of Modelling

We bring the high profile of Modelling in educational publications up as a first
argument for our decision to choose this idea as a prototype for the development of
Computer Science Education. Representatively we want to quote the books of Peter
Hubwieser where the idea is a pivotal structuring element ([9], [10]) or the
publication of Andreas Schwill and Sigrid Schubert (2004, [14]). These authors
instance Modelling as an Fundamental Idea explicitly.

Modelling as technique in terms of Computer Science has a strong focus on
Implementing [6] wherewith our view centers on Programming and Algorithmising
which are traditional fundamentals of Computer Science. We bring up this fact as a

second argument for our choice. We base the evidence of our statements on the
following definitions. The examples are taken from publications written in German.
We hope that the message which we want to put over to the reader don’t suffer from
our translations.

We start with Hans Haas and Detlef Wildenberg (comp. [8]) who carry on our
strategies mentioned before in their definition published 1982: ‘Programming aims at
the implementation of algorithmus (and data structures) on Computers.’ Later on
Gerald Futschek and Peter Hubwieser built a bridge to the idea of Modelling by their
characterizations: ‘When Programming the computer scientist draws up a model to
solve a given application problem firstly. The initial model will be modified stepwise
to other models which will always become more detailed and more formal. This
iterative process will be run through until a final model coded in a program language
will come out’ [7] and ‘Programming means Implementation of abstract models with
the aim to visualize and to prove the character of the models through simulation’ [9].

Finally the target-orientation of teaching is our third argument for choosing
Modelling. In particular we refer to one of the central items in Lorin Anderson’s and
David Krathwohl’s well accepted Taxonomy (2000, [1]). It addresses the ability to
apply strategies and concepts in new situations.

Now we change our focus and look at the practice.

2 Modelling Aspects in an reality related Instructional Concept -

Character Recognition

This chapter illustrates prototypically possible content which could be treated in
classroom. It requires modelling aspects, especially functional1 and object oriented
modelling2, essentially.

2.1 Functional modelling

Before you deal with character recognition you will have to work on principles of
digital image processing. This can be done without many special requirements in
class, only simple knowledge of spreadsheets is required. The functional model
behind spreadsheets implies the importance of the role that functional modelling
plays.

There are many types of digital raster images such as photos, colour and greyscale
images, screenshots, fax documents, radar images or ultrasound images in practice.
Raster images are rectangular usually and made of regularly arranged picture
elements so-called pixels. In general raster images are rectangular and differ mainly
by the values stored in the pixels. Contrary implementations to raster images are

1 Photos (e. g. greyscale images) normally are represented as (greyscale) functions. (comp.

chapter 2.1 – e. g. [4], p. 5 and p. 10)
2 Modelling of lines (and characters) as objects is useful to be able to detect those objects in

raster images. (comp. chapter 2.2 – e. g. [4], p. 155ff)

Vector graphics ([4], p. 5). Tracing back to those one can interpret a recorded raster
image as a matrix with numbers. ([4], p. 10)

Fig. 1. Part of an image (magnified) and related greyscale function (comp. figure 2.5
in ([4], p. 11))

The digital image is more formally. A greyscale function f(i, j) = g with positive
integers as arguments i and j e. g. generates non-negative image values from 0 to 255.
In this way images can be represented, stored, processed, compressed or transmitted
by computers. It doesn’t matter which way an image has emerged actually. We simply
understand it as numeric data. ([4], p. 10) Character recognition deals with finding
special patterns in such a matrix with numbers to be able to convert it into a vector
graphic or a string.

Many effects such as the sharpening or smoothing of an image can be realized with
the help of filters. ([4], p. 89). Students can reconstruct elementary principles of
digital image processing through functional modelling which means by manipulating
pixel values in a spreadsheet to simulate linear filtering. They will be enabled to
detect possible edges (changes of the intensity (of the pixel values) (comp. [4], p.
117)) in pictures for example.

The steepness of the greyscale function represents the strength of an edge. It is
nothing but the amount of the gradient and the direction of the edge perpendicular to
the direction of the gradient. ([15], p. 174f) Since edges separate objects (e. g.
characters) from the background the knowledge of edges may be useful for example
in character recognition and therewith in the detection of complex objects (e. g.
faces). Students can reconstruct the edge detection by simulating the differentiation of
the greyscale function by approximating3 the derivatives by differences in Excel by
the use of linear filtering (comp. [15], p. 175). As mentioned above an edge is a place
of great change in intensity according to Burger et al ([4], p. 117). Thus this basic idea
behind the edge detection using functional modelling can be implemented in
classroom much earlier because the demands will become more suitable even for the
lower grades.

3 Approximation is considered as another well accepted fundamental idea in computer science

and mathematics. [13]

To get a visualization of results (new pixel values) you can convert the values back
to an image or just zoom out of the matrix:

Fig. 2. Matrix of pixel values (part of the letter “B” after simulating a (functional)
edge detection algorithmus)

As mentioned above, digital raster images are represented as functional models and
therefore functional modelling helps students to reconstruct elementary principles of
digital image processing and to be able to detect possible positions of edges.

2.2 Object oriented modelling

Now we will change our point of view and focus on patterns (e. g. straight lines) in
our images which means detecting characters (e. g. consisting of straight lines).
Object oriented modelling will come to the fore. This helps us to detect objects (e. g.
straight lines or characters) in an image (a matrix of separate pixel values, e. g. after
running an edge detection algorithmus).

The so-called Hough transform (e. g. described in Burger et al ([4], p. 155ff)) is a
concept to detect parametric geometric forms (e. g. lines and circles) described by few
parameters. For example lines can be described by the radius4 and an angle5. You
must find these parameters to detect a line. ([4], p. 155ff) Radius and angle are
attributes of lines. Hence it will be useful to discuss an object oriented model of lines.

If you decide to use a professional method for detecting lines (e. g. the just
mentioned Hough transform) in class it will be profitable to consult an already
arranged code for discussion from a methodological point of view. Thus the students
will be able to concentrate on central modelling and accuracy aspects. Even the
supplementation of dynamic geometry or computer algebra software is useful to get a
better visualisation of the modelled situation.

Certainly students can implement (primitive) line detection algorithms on their
own, e. g. a brute force algorithm searching for all possible lines in the image.

4 distance to the origin ([4], p. 160)
5 deviation from the horizontal axe (comp. [4], p. 160)

Anyway the implementation should be an object oriented one taking care of the
attributes (and methods6) of a line, because the algorithm should detect objects (e. g.
straight lines and later on characters) in a raster image (a matrix of separate pixel
values, e. g. after running an edge detection algorithmus). For example the students
may decide to implement lines by choosing a two points-strategy in continuation of
the functional modelling results (raster images).

Possible implementations for points and lines (without getter- and setter-methods)
could be the following:

public class Vec2D {
 // coordinates of the pixel in the image
 private int x;
 private int y;

 public Vec2D(int x, int y) {
 this.x = x;
 this.y = y;
 } // Vec2D

 public Vec2D minus(Vec2D v) {

return new Vec2D(this.getX() - v.getX(),
this.getY() - v.getY());

 } // minus
} // Vec2D

public class Line {
 private int a;
 private int b;
 private int c;
 private Vec2D p1;
 private Vec2D p2;

 public Line(Vec2D p1, Vec2D p2) {
 // line through points p1 and p2
 this.p1 = p1;
 this.p2 = p2;

 // direction vector
 Vec2D rVec = p1.minus(p2);

 // orthogonal vector

Vec2D nVec = new Vec2D(-rVec.getY(),
rVec.getX());

 this.a = nVec.getX();
 this.b = nVec.getY();

this.c = nVec.getX() * p1.getX() +
nVec.getY() * p1.getY();

 } // Line

6 A line is an object that „does“ nothing. “Acting” methods are necessary therefore.

 public boolean equals(Object o) {
 Line g = (Line) o;

if ((this.k() == g.k()) && (this.d() ==
g.d())) {

 return true;
 } else {
 return false;
 }
 }

 // k ... slope of the line
 public double k() {

return (p2.getY() - p1.getY())*1.d /
(p2.getX() - p1.getX()); // or k = -a/b

 } //k

// d ... distance on the y-axsis (-> section
point line/y-axis)

 public double d() {
 return c*1.d/b;
 } //d
} // Line

The last class consists of the two defining points as attributes and different methods
for calculating the slope and other attributes (based on the two points). These other
attributes may be needed for the implementation ideas of the students for
implementing a (brute force or (later on) systematic) detection algorithm, e. g. to be
able to compare the slope of given lines.

3 Students’ Perceptions of Modelling

Additionally we were interested in the effects of the instructional concept especially
in those in the direction of Programming in terms of Modelling. Hence we added a
slight questioning finally.

3.1 General conditions and Questionaire

The evaluation was made in a special form in the BG / BRG Ramsauerstraße, a
grammar school in Linz, Austria, where computer science is taught from grade 9 up to
grade 12 (age 15 to 18) obligatory (see following table).

Table 1. Amount of computer science lessons a week in a special form of a grammar school in
Linz.

Grade Amount of
computer science

lessons a week

9 3
10 2
11 2
12 1

Furthermore these special forms are separated in classes where each student has his /
her own notebook at all hours (attribute N) and computer-classes where lessons are
held in computer rooms whenever access to computers is needed (attribute S). We
want to mention that we do not bring this separation into account in our evaluation as
we decide to concentrate on effects in these forms in general.

Theoretically and practically we decided to apply methods of action research in the
way of Peter Posch and Herbert Altrichter [12].

The questionnaire is structured in a specific and a general part. The single items of the
specific part deal with attributes concerning modelling (Remembering, analysing,
illustrating, implementing, applying and synthesizing – q1a-q1e), those of the general
address the relevance of modelling for general education (Maturity in terms of
everyday life, operating- and decision-, communication-competences – q2a-q2c).
Each item is bipolar (from -5 as lowest rate up to 5 as highest rate).

3.2 Selected results

Additionally two side comments:
The free software PSPP7 was used for evaluation and LibreOffice Calc8 for

histogram paintings.
The validity of our items was tested via the correlation between Remembering

(q1a) and ‘Knowing the vocabulary’ -item (q1ei) as well as illustrating (q1c) and
synthesizing (q1eiV) which should be strong as expected. The results (based on a

population of 87 students) are as follows: 38.01,1 =eiqaqr and 85.01,1 =eivqcqr .

Both values are positive. Especially the second one indicates high correlation.

Additionally we present the analyses of the attributes analysing (q1b) and applying
(q1eii) graphically as they indicate core properties of modelling after our conviction.

7 PSPP – a software for statistical analysis (http://www.gnu.org/software/pspp/)
8 www.libreoffice.org

Fig. 3. Frequencies of question q1b “Mark the rate of the following attribute playing a role
in Modelling: Analysing (which means stepwise structuring of a given problem)”.

Fig. 4. Frequencies of question q1eii “Mark the rate of the following attribute playing
a role in Modelling: Implementing II (which accents the 'programming'-competence)
� Applying efficient program structures (conditional branch, iteration, recursion)”.

Even essential aspects of general education can be identified in the evaluation results.
Exemplarily we state the graphical representation for Maturity in terms of everyday
life (q2a).

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

2

4

6

8

10

12

14

16

18

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

5

10

15

20

25

q1b

q1eii

Fig. 5. Frequencies of question q2a “Rate the relevance of Modelling in terms of ...
Maturity (which means the ability of coping with everyday life problems (ranging
from social to technical questions))”.

We interpret the results as very convincingly. One can accept that the instructional
concept centered on modelling left desired effects with the students.

4 Perspectives and future duties

Computer science in school is a very new subject in many countries worldwide.
Hence big application must be invested by teachers and computer science educators in
formulating basic principles independently of time as these ideas will help to structure
modern purposeful teaching. The bundle of well-discussed and well-approved
techniques will trendsetting characterise the students’ attitude ‘Thinking
Informatically’.

References

1. Anderson, L & Krathwohl, D et al (2000). A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. Allyn &
Bacon:Boston.

2. Armoni, M (2010). On Teaching Topics in Computer Science Theory – Part II: Making it
Possible by Using the Prism of Fundamental Ideas. In: ACM Inroads, Volume 1, Issue 4, p.
18 -19.

3. Brandhofer, G et al (eds. 2010). 25 Jahre Schulinformatik in Österreich: Zukunft mit
Herkunft (25 years of Computer Science in schools in Austria: Sourced future),
books@ocg.at: Vienna.

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

2

4

6

8

10

12

14

16

q2a

4. Burger, W et al (2005/2006). Digitale Bildverarbeitung, Eine Einführung mit Java und
ImageJ. 2. Überarbeitete Auflage. Springer: Berlin, Heidelberg. ISBN 978-3-540-30940-6
(Print) bzw. 978-3-540-30941-3 (Online) (SpringerLink), ISBN-13 978-3-540-30940-6;
(This book is also available in English: Burger, W et al (2008). Digital Image Processing,
An Algorithmic Introduction using Java. Springer. ISBN 978-1-84628-379-6)

5. Fuchs, KJ (1994). Didaktik der Informatik: Die Logik fundamentaler Ideen (Computer

Science Education: The Logic of Fundamental Ideas). In: Medien und Schulpraxis,
4+5/1994, p. 42 – 45.

6. Fuchs, KJ (2005). How Strict May, Should, Must the Borders be Drawn? In: Innovative
Concepts for Teaching Informatics (Micheuz, P. et al eds.). Carl Ueberreuter: Wien, p. 7 –
14

7. Futschek, G (1990). Informatik als Wissenschaft (Computer Science as a Scientific

Discipline). In: Didaktik der Informatik (Computer Science Education) (Reiter, A & Rieder,
A. eds.). Jugend & Volk: Vienna.

8. Haas, H & Wildenberg, D (1982). Informatik für Lehrer – Band 2: Komplexere Probleme
und Didaktik der Schulinformatik (Computer Science for Teachers –Volume 2: More

Complex Problems and Computer Science Education). Oldenburg: Munich, Vienna.
9. Hubwieser, P (2007). Didaktik der Informatik: Grundlagen, Konzepte, Beispiele (Computer

Science Education: Basic principles, concepts, examples). Springer: Berlin.
10. Hubwieser, P et al (2004, 2007, 2009, 2010). Informatik 1, 2, 3, 4 (Computer Science 1, 2, 3,

4). Klett: Stuttgart.
11. Micheuz, P (2010). 25 Jahre Schulinformatik (25 years of Computer Science in schools). CD

– Austria Sonderheft des bm:ukk.
12. Posch, P. & Altrichter, H. (2007). Lehrerinnen und Lehrer erforschen ihren Unterricht, 4.

Auflage (Teachers analyse their lessons, 4th edition). Verlag Julius Klinkhardt: Bad
Heilbrunn

13. Schwill, A (1993). Fundamentale Ideen der Informatik (Fundamental ideas in computer

science). In: Zentralblatt für Didaktik der Mathematik (International Reviews on

Mathematical Education), Volume 25, Number 1, p. 20 – 31.
14. Schwill, A & Schubert, S (2004). Didaktik der Informatik (Computer Science Education).

Spektrum Akademischer Verlag / Elsevier GMBH: München.
15. Tönnies, K D (2005). Grundlagen der Bildverarbeitung (basics of image processing).

Pearson Studium. ISBN 3-8273-7155-4
16. Zendler, A. & Spannagel, Chr. (2008). Empirical foundation of central concepts for

computer science education. ACM J. Educ. Resour. Comput. 8, 2, Article 6 (June 2008), 15
pages.

Let’s talk about Internet 1

František Gyárfáš
Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina,

Bratislava, Slovakia, gyarfas@ii.fmph.uniba.sk

Abstract. Internet is a new world. It is young, growing extremely fast,
changing rapidly. For our children it is a natural part of their environment.
There are many serious questions concerning Internet: ethical, philosophical,
social, legal, etc. We do not have a set of answers, but it is important to discuss
these questions with young people. It could help them to understand this new
digital world and develop proper ethical and social behavior, and trust social
relations and also to be careful with them.

Keywords: Internet, digitalisation, social networks, virtual love, plagiarism,
file sharing.

1 Behind the mirror

Another world grows close to us. In fact, it is very close: the distance is one click.
We have built this world. Its name is Internet.

Internet as we know it exists for only about a quarter of century. It started with few
pages serving scientists for communication and information exchange. Nowadays it
serves billions of people for almost everything. It consists of hundred billions of
pages, addresses, pictures, music, videos. It is growing unbelievably fast:
exponentially. It is not only growing, it is also changing continuously. We did not
know five years ago how it would look like today and now we have no clue how it
will look like three years from now.

There are no courses of Internet literacy. We are learning it every day, adapt to
new software, new content, new customs, new netiquette, and new dangers. All of us
are testers of its usability. We judge its quality: criteria are acceptability, popularity
and usefulness. More and more of our information, duties, working tasks, social
activities, cultural events, and love affairs are moving into this world. We spend on
Internet large parts of our days and nights. We are starting to be net citizens.

Most of adults still remember times before Internet. We grew up with books,
cinemas, phonebooks, maps, working places. Nowadays many of these things are

1 Acknowledgement: this article has been written at the Department of Applied
Informatics of Faculty of Mathematics, Physics and Informatics at Comenius
University in Bratislava, and VEGA MŠ SR, Project n. 1/0688/10 supported it.

disappearing and their contents move to Internet. We have to adapt to it and we do.
We are changing our schedule, customs, behavior, and principles.

Situation of our children is different. They are growing directly into Internet. For
them Internet is not a new world, but an integral part of their living environment.
They communicate, play, learn, invent, shop, travel, love and hate in Internet. They
download music, watch movies, write school essays, chat with friends, publish
photographs, write blogs, create videos, play multiplayer games, socialize on
Facebook, ask Google, and learn from Wikipedia.

Alice went through the mirror and came into a world of miracles [1]. We go
through such mirror every day. But our children are inhabitants of both worlds.

A lot of things in this strange world are different from our customs, moral, even
law: torrents, hackers, open source, Google, Wikipedia, Wikileaks, plagiarism or
netiquette. But we can still recognize strong similarities. We should take lessons from
our ethical principles, knowledge management, copyright laws, freedom of speech,
and protection of property.

Even if we do not know the answers, we should talk to our pupils and students
about these questions. Discuss phenomena of Internet, show examples of similar
situations, and warn about apparent or hidden dangers. Ask them about their opinion
and try to formulate solutions acceptable for them. Discussion about Internet should
be a part of education.

2 What to discuss

2.1 Limits of growth

Internet is a giant network of computers, servers, routers and cables. They cover
almost the whole planet. A map of these technical devices is another layer to a map of
our continents, countries, and cities. But this is not the real map of Internet. Such map
is organized differently; it does not resemble our globe but an outer space. The
visualization can look like this:

Fig. 1. Internet map. Image: Internet Mapping Project, Bell Labs/Lumeta Corporation
http://www.physorg.com/news151162452.html

Shining dots on this map are web pages, portals, social networks, email boxes and
other Internet addresses. It does not matter if a web page is physically stored in
Europe or in Australia. The map does not change if we move a portal from one server
to another, from one country to another continent. This map depends on links.

It contains hundred billions of sites, web pages, Wikipedia entries, photographs,
music or movies. Number of them is growing exponentially. Intuition tells us that this
increase must crash into limits of growth. Up till now it did not.

What helps until now is Moore’s law. Computer specialist Gordon Moore
discovered already in 1965 that number of transistors per square inch on integrated
circuits had doubled every year. Ten years later he increased this period to 18 months.
But nevertheless his law is valid for a half of a century. Not only a capacity of
integrated circuits grows with this speed, but also memory, speed of calculation, etc.
Similar growth can be found also in Internet. [2]

Questions

Are there any limits of Internet growth? How would these limits look like: would it
be an end of our knowledge or a capacity overflow?

2.2 All knowledge of the world

It seems that we are transferring all our knowledge into the Internet. It is obvious
with new texts. If we produce a new text for publishing, either we type it directly into
a computer or it will be typed there in the process of editing, printing or reproduction.
A similar happens with pictures, movies, or music. There are still some limits though:
three-dimensional objects like statues or architecture, food, wine, or furniture. But at
least their recipes, plans and documentations are stored on Internet.

http://www.physorg.com/news151162452.html

On the other hand, there are billions of old documents stored in archives of this
world, millions of books, paintings, symphonies, maps, movies, or photographs. They
are stored on paper, canvas, vinyl and celluloid, in formats far from digital.

There are strong arguments to digitalize complete archives, libraries, and galleries.
The main reason is access time and cost. It is much more expensive to get a piece of
data stored somewhere on paper or celluloid. It is complicated to search for it, find
out, where it is located, visit that institution, ask for permission and get it.

The comparative advantage of digital archive is so high that effectiveness puts
pressure on digitalization of whole archives, no matter how many millions of artifacts
they contain. We see this movement already now: Google Books, BBC, national
programs of digitalization, and many other projects.

Mere digitalization is not enough. It is necessary to transform scans of texts into
digital letters, describe content of pictures, add names to faces and locations, add
written dialogues to movies. The ultimate goal is not only a digital reproduction, but
completion of semantic analysis as well to be able to provide effective search.

Questions

Should all knowledge of human history be digitalized? Who will pay for that?
Should be an access to digital knowledge charged or should be for free? Should we
protect our knowledge against misuse or against future Artificial Intelligence?

2.3 Power of search engines

There are billions of objects in this digital world. Most of them are linked together.
We can jump from any place to the other. But a problem is how to find something.
Fortunately there are specialized programs that help us to search through Internet –
search engines (SE). The most popular SE are Google, Yahoo!, Bing, Baidu (China).

SE are based on three main activities: web crawling – programs travel over the
Internet to access and bring all pieces of digital knowledge to SE, indexing –
analyzing found pages and incorporate them into huge indexes, searching – finding in
indexes relevant answers to user questions. It is not only important to find all relevant
answers but also to sort them reasonably. With several thousands or even millions of
answers, the best of them must be sorted within first few pages of results. Very
successful in proper sorting is a specialized algorithm PageRank used in Google. It
sorts pages according to number of links that are pointing to them. More popular
pages (with higher rank) linked to a page give a page higher rank as well. This means
that not all pages in Internet are equal.

Unfortunately, a large part of the Internet is hidden from SE. It is called invisible
(deep) web, where private, unlinked or dynamic data are stored. Some studies expect
that this part of the web is still larger than a visible part of the web, covered by SE [3].

SE are extremely powerful. What they do not recommend is forgotten. Nowadays
they are available not just on computers, but they start to be an integral part of mobile
phones, cars, TVs, music players. SE improve their functionality and transform
themselves into intelligent assistants. They are able to use additional information as

user location, profile, history of previous searches, but also recommendations of
people with similar profiles and taste.

SE are trying to incorporate into search a lot of additional information collected
from various sources. It would be enough to direct your mobile phone at a persons
face and SE will find you his or her identity. It will recommend wine in a wine store,
movie you could like and how you should dress. It will remind you your schedule or
tell a content of articles before you start to read them. They will be able to answer
various what if questions.

SE are not only our windows into Internet knowledge base. They also collect a
huge amount of information about us, about our interests, habits and daily lives. They
know when and where we are planning our holidays. They follow our dates,
weddings, and divorces. They know our health. All these information they got from
us or they infer them from our queries. It can be used for our comfort like precise
recommendation or advertisement, but as well as for spying us out or making us
victims of targeted spam mails or other attacks [4].

Questions

Could we live without SE? Can we trust them? Who is an owner of information
collected in SE? Could we protect ourselves and still use SE? Should exist a legal
protection of our privacy? Are SE the intelligence of Internet?

2.4 Intelligence of crowds

Nowadays, millions of people cooperate and collaborate on various creative
projects. These people live somewhere at this planet and usually do not know each
other. Collaborations and peer production of such mass was not possible ever before.
Internet is a first tool that allows organizing it.

There are several conditions collective projects usually fulfill: large reservoir of
experts, low investment costs (computers connected to Internet), common
environment (wiki), split of work into small segments, iterative development, low
cost of integration, benefits for all [5].

There are many types of collective intelligence products: encyclopedias
(Wikipedia, IMDb, etc.), open source software (Linux, Firefox, MySQL, Apache,
Moodle, etc.), self-presentation portals (blogs, YouTube, Flickr, etc.), social
networks (Facebook, Twitter, etc.), collective forums and many others.

Collaborators invest their time, expertise, and creativity without a salary or
personal profit. They very often participate anonymously. Their motivation is neither
financial reward, nor fame. Appearance of such projects surprised many. Anonymous
collective long-term effort without reward is contra intuitive. Motivation is a mystery,
but results are real [6].

Important conditions of success of collective projects are: openness (everyone is
allowed to join), share (results are for all), parallelism (development can continue in

many parallel threads), share of knowledge (collaborators communicate with each
other), evolutionary approach, global access (not limited to territory) [7].

Important question is the quality of collective products. It is not guaranteed by
formal methods, just by active participation and collective feedback. One of the most
famous cases of quality controversies happened in 2006. Magazine Nature published
a study that compared quality of Wikipedia with Encyclopedia Britannica. Britannica
won but the difference was not big enough. The study proved that the quality of
Wikipedia is acceptable [8].

There are several explanations of collective intelligence projects quality. Some of
them were published in forms of law:

Linus law of quality [9]

Given enough eyeballs, all bugs are shallow.

Grahams law of quality (evolution law) [10]

People just produce whatever they want: the good stuff spreads, and the bad gets
ignored.

Questions

What are driving sources of collective intelligence? Is open source really public?
Could a collective intelligence be more intelligent than a sum of all participants?

2.5 Digital copying, torrents, and plagiarism

A production of copies was always an important part of intellectual properties
distribution. Books, paintings, music, movies were reproduced in thousands or even
millions of identical exemplars made of paper, vinyl, celluloid or other materials.
Each copy had its price. If someone wanted to have it, it was necessary to pay the
price, or at least to borrow it. There were thousands of legal owners of the same work.
Individual reproduction was complicated and very expensive.

Each of us was an owner of some books. Private libraries were production tool for
scientists, or artists. But even large private libraries contained only thousands of
exemplars. The distribution of books was specialized and unequal.

Digitalization changed this completely. There are no technical obstacles for anyone
to duplicate e-book, CD, DVD. There is no recognizable difference between a digital
original and a duplicate.

Very controversial distribution of intellectual properties is sharing them by
torrents. There were many attempts to protect digital artifacts against such copying or
to forbid it legally. There were several legal cases like Napster, or Pirate Bay but they
did not help to stop copying and sharing.

Today there are millions of book, movies, and music records accessible by few
clicks. It takes just few minutes from having interest in a book, article or music to
having an access to it. The ultimate goal is to provide immediate access to all books in
all languages of all ages. This does not mean that everything would be for free. But it
would be available. We do not know how this accessibility will influence relationship
of our children to education and knowledge.

The real change is not only accessibility. It is also a relationship to originality. On
Internet, there are already now thousands of written materials for almost any topic. It
is very simple to produce an essay, or other work just by using them. They could
serve as sources of information but also as building blocks of new solutions. Copy-
paste is a fast and effective method of production. But it is not allowed in current
schools because of plagiarism. It is not easy for young people to understand why
something that is a daily routine in their lives (looking for information on internet and
use it) is forbidden and morally doubtful. Punishment is not an explanation.

Questions

Is knowledge a property? What is a difference between finding and knowing
information? What is wrong with copy-paste? Should be all information for free?

2.6 Social networks, privacy, netiquette

First thing in the morning many people do is to check statuses of their internet
social connections. There are messages that arrived during the night, new photographs
from parties, emails from friends, living on the opposite part of the world. People are
being permanently socially connected.

There are many tools used for this: emails, ICQ, Skype, Facebook, Flickr. These
tools give us impression that we are living in small worlds. That there are friends
close to us we could always talk to and rely on. Somehow it is true. Nowadays friends
do not loose their intimate contacts because of traveling or migration. People never
spent so much time with their friends. They share and comment daily lives without
necessity to be together. We add new friends and do not leave the old ones. Many
people prefer communication on Internet to being together. They underestimate the
chemistry of real social life, and move into a world of pure information without
feeling physical closeness.

There are many new and unknown consequences of this social change. First is an
illusion of permanent being with friends. Many people already recognize that friends
in Facebook are not real ones. Lonely people stay alone, no matter how many
Facebook friends they have.

Second problem arises from the fact that on Internet nothing really disappears.
Whatever you did, wrote, asked Google or commented on social network stays there.
People change their lives, their opinions, their friendship, their work, but evidence of
their previous opinions, crazy parties, love stories, smoking experiments stay there for
future judgments. The past was never so close.

Another danger of social communication on Internet is its non-physicality. Words
are only a small part of messages we talk to each other. In normal communication we
help ourselves with gestures and body language. On Internet we do not have such
tools. There is no sign of humor or self-irony. We have to learn how to communicate
and not destroy politeness and trust. Netiquette is an important part of our good
manners on Internet. [11]

Questions

How real is a social life on Internet? What value has a number of Facebook
friends? Is a presence on social network a necessity? What is a purpose of smilies?
Would you publish negative information about your friend? Would you mind if
someone publishes private information about you?

2.7 Virtual love

Love is a passion that happens among living people. It affects their bodies and
soul. It is a mixture of body attraction, spirit and chance. There are rules, but they are
broken all the time. Love is connected to sex. But there are also exceptions: platonic
love without sex and sex without love.

We believe that love needs physical world, dates, kisses, and touches. Internet
changed this reality. People start to visit chat rooms, where they meet virtual
personalities; they chat, flirt and fall in love with them. They do not know how the
others look like, how old they are, what is their sex, education, status. Internet opens a
strange, unreal world where a skinny teenage blonde can be an old, married fat man,
or a skinny teenage blonde. In words the difference is unrecognizable.

There are many reasons why people are going there. It is an escape from
loneliness, possibility to find partners, whom they can talk to. Some people are afraid
of relationships, some are too shy, and some find themselves unattractive. It is much
easier to find people with same interests on Internet than in suburbs, where most of us
live. Internet offers anonymity, plenty of identities, invisibility, and security,
neutralization of own status. People can escape borders, conventions, and social
control.

On the other hand, Internet also brings new dangers: lies about own identity, false
interpretation of other persons, relations to dangerous people. Internet is full of
pornography and crime. You do not see to whom you are talking your intimate
secrets.

It is not easy to talk about these questions with young people but at least it is
important to tell them, that they exist.

Questions

Can You imagine to fall in virtual love? Is anonymity a protection for intimacy?
Would You mind to have an Internet relationship? Do You trust Your Internet

friends? Are You telling true on Internet? Are You expecting that people tell true to
You there?

2.8 Hackers, crime and politics

Internet is young and new. It is a place of freedom, courage, adventures of different
kinds. Most of its discoverers are young people, full of romantic enthusiasm to change
old rules and replace them with better ones. Open source initiatives, file sharing
torrents are just examples of their new ethic.

Another example are hackers. Computer adventurers, who can brake into any
computer, circumvent all locks and make good. There is a lot of romantic idealism in
an image of a typical hacker. Especially young people do not see danger from their
activities. Media and movies often support this positive image. The main argument is
that hackers fight the evil, they brake private places but do not make any harm. One
of the most controversial cases nowadays is WikiLeaks; a portal specialized in
publishing secret documents of governments, banks, corporations and industries.

Unfortunately hacker ethic is just an ideal. There is no guarantee that braking into
private computers does not cause any harm. There are many examples of the opposite.
Internet is full of criminal activities, political repression, spying, spam and terrorism.
There is no reason to trust someone who feels in your computer as at home.

Internet is more and more a political arena. Election campaigns use viral effects of
social network; they manage revolutions; some countries like Estonia use Internet for
general elections, people use absolute freedom of speech there.

Questions

Should we punish hackers as criminals or accept their right to brake into private
computers if they do not make harm? Is absolute freedom of speech on Internet a
positive or negative attribute? What should we do with infringement of international
law by states, governments, secret services, international terrorist networks? Are
elections on Internet safe?

Conclusion

We use Internet as a daily routine. We move there our collective knowledge and
use it for all purposes. We meet there our friends, publish our ideas, present our lives,
and tell our secrets. Our children are growing also there.

There are no final answers about Internet; it is changing too rapidly and we do not
know enough. If there were any, they would be ridiculous in just few years,
sometimes even shorter.

Absence of answers does not mean that discussions do not have sense as well. We
have to live there as well as we live in our physical world. We need rules, manners,
netiquette, safety and security. We should behave there according to our collective

expectations. All of the mentioned starts with discussions, agreements, and solutions.
Finding answers to new questions.

Let’s talk with our pupils about Internet.

References

1. Carrol, Lewis: Alice's Adventures in Wonderland. Penguin Classics, London,
(2010)
2. Zittrain, Jonathan: The Future of the Internet. Penguin Books, New York (2008)
3. Battelle, John: The Search. Portfolio, Penguin Books, New York (2006)
4. Conti, Greg: Googling Security, How Much Does Google Know About You?
Addison-Wesley, New York (2008)
5. Tapscott, Don, Williams, Anthony D.: WIKINOMICS, How Mass Collaboration
Changed Everything. Portfolio, Penguin Books, New York (2006)
6. Surowiecki, James: The Wisdom of Crowds, Why the Many Are Smarter Than the
Few and How Collective Wisdom Shapes Business, Economics, Societies, and
Nations. New York: Doubleday (2004)
7. Sunstein, Cass R.: Infotopia, How Many Minds Produce Knowledge, Oxford
University Press (2006)
8. Giles, Jim: Internet encyclopaedias go head to head, Nature, 438, 900-901
9. Raymond, Eric S.: The Cathedral & the Bazaar. O'Reilly. ISBN 1-56592-724-9
(1999)
10. Graham, Paul, 2005: What Business Can Learn from Open Source. Essay derived
from a talk given at OSCON (O’Reilly Open Source Convention) 2005 (1–5 August,
Portland, Ore.), http://www.paulgraham.com/opensource.html.
11. Weinberger, David: Everything is Miscellaneous, The Power of the New Digital
Disorder. A Holt Paperbacks, New York (2008)

http://www.paulgraham.com/opensource.html

Minimally Invasive Education for Computer Literacy

Claudia Horner

University of Salzburg
Hellbrunnerstraße 34, 5020 Salzburg
claudiahelena.horner@stud.sbg.ac.at

Abstract. Minimally Invasive Education is an Indian approach that intends to
give children of poor social background the opportunity to achieve Computer
Literacy. The central part of the paper concentrates on the discussion of the
term Computer Literacy and the skills that children are expected to acquire in
the process of working with computers. Furthermore, it focuses on the question
of how Minimally Invasive Education can be integrated in European computer
science courses.

Keywords: Computer Literacy, ECDL, Minimally Invasive Education

1 Indroduction

In 1999, an experiment was conducted in the course of which a computer was built
into a wall and people observed how children in the adjacent slums made use of the
appliance. In the newspapers this experiment was titled Hole in the Wall. Mitra and
Rama who observed this experiment referred to it as minimally invasive. This term
was borrowed from medicine. Mitra said in an interview [8]: “I’m saying that, in
situations where we cannot intervene very frequently, you can multiply the
effectiveness of 10 teachers by 100 – or 1,000 – fold if you give children access to the
Internet. […] This is a system of education where you assume that children know how
to put two and two together on their own. So you stand aside and intervene only if you
see them going in a direction that might lead into a blind alley. That’s just so that you
don’t waste time.”

In the meanwhile the Hole in the Wall experiment has also come to be known as
Minimally Invasive Education and is being tested in several urban and rural areas in
India. Usually observations show similar results: a learning-effect occurs through
arbitrary experiments and exploration. The children invent imaginary words to
communicate the results to others. Minimally Invasive Education learning stations are
in use in several other countries as for example Cambodia, Botswana or Mozambique.
It is very important to mention that none of these projects aims to replace a teacher in
class.

2 Computer Literacy or What should kids be able to do with
computers?

Nowadays it is expected that everyone can handle a computer at work, at school, in
the industry and the economy. This ability to work with a computer is known as
Computer Literacy. Schubert and Schwill [16, p. 15] define the term as follows1:
“[Computer Literacy] expresses the need for the purposeful use of computers to
become a central cultural technique as is reading, writing and calculating. It covers
the knowledge of computers and their variety of uses as well as the ability to utilize
them in different tasks in business and professional life, at home and for recreational
activities. Basically, this ability is to be expected from all students; without it, that is
computer-illiterates [sic!], a controlled participation in everyday life becomes
impossible.”

It is especially Schubert and Schwill [16] who assume that a computer-literated
person should have knowledge of the history of computer science, of functional units
and the meaningful use of language. Mitra and Rama, on the other hand, define
computer literacy as follows [12]: “Turn on a PC, use MS Paint to create a designed
picture, move objects using folders, shortcuts, cut-and-paste, drag-and-drop, copy
and delete methods, move from one web page to another and back and send and
receive e-mail through a PC that is pre-configured to do so.”

These two statements clearly show how multifaceted the term Computer Literacy
can be. On the one hand it is the simple use of the devices that is addressed, and on
the other hand the focus is on the consolidated knowledge of the processes running in
the background. The issue of cross-cultural influence is mentioned in both
publications.

A lot of teachers may consider the ECDL, the European Computer Driving License
as a measurement for Computer Literacy in computer science education. In the
following I will briefly outline the ECDL principles for readers who are not aware of
the concept: The ECDL consists of individual modules, mostly based on the
Microsoft Office package. Each module is taught like a cooking recipe. In this
approach computers are generally used as trainers. Each change of program versions
will necessitate a follow up training as the adopted skills will hardly be transferred.
Hubwieser [6, p. 48] addresses this issue too2: “Unfortunately the term computer
science is often misused in school for any type of work with the computer. This ranges
from a computer aided video-tutorial to finger exercises on the keyboard.”

Therefore computer science education is settled in a field of competing interests
between the use of the computer as a medium, its use as a trainer and the mastery of
basic concepts (see Fig. 1, literal translation [6, p. 49]). Hubwieser does note that a
meaningful use of computers as a medium requires basic skills in the use of the
computer together with the knowledge of basic concepts. But then again, simple user

1 The original publication is written in German unfortunately. Hence I decided to translate the

text passage and all following publications in German into English. I hope that the intentions
of the authors will not suffer from this translation.

2 Original publication in German.

training emerges as a mere exchange of recipes. From the point of view of a student
however, the mere teaching of concepts leads to a computer science education far
apart from practical usage.

Fig. 1. Integration of teaching aids, user training and teaching basic concepts

1984 the Gesellschaft für Informatik (German Society for Computer Science)
introduced a concept of information technology in basic computer education in an
attempt to reconcile these different points of view [6]:

• Knowledge of basic structures,
• practice of simple applications of information technology,
• presentation of the opportunities and risks of information technology,
• processing and classification of student experiences in the environment of

information technology.
One main goal of Hole-in-the-Wall is that computer literacy is no longer a

privilege of people who have access to a computer at home and/ or at the office.
Everyone regardless of his/ her origin should have the chance to acquire computer
literacy [11].

3 Ways to Hole-in-the-Wall

Mitra comments on the first achievements of Hole-in-the-Wall [13]: “Within six
months, the children of the neighborhood had learned all the mouse operations, could
open and close programs, surf the Internet and download programs, surf the Internet
and download games, music and videos. When asked, they said they had taught
themselves. They were describing the computer in their own terms, often coining
words to describe what they saw on the screen. The hourglass symbol was “darmu”,
the mouse cursor “sui” or “teer”.”

The kids learned how to deal with the computer independently regardless of the
language they used and outside the school. Some experiments preceded the Hole-in-
the-Wall project to explore and understand the effect of collaborative learning:

3.1 LEDA experiment

The term LEDA [10] is derived from Learning through Exploration, Discovery and
Adventure and was initiated as a one-week summer school for kids between 4 and 16
years from urban areas. These experiments were conducted in the period from 1991-
1996. Part of this program included that the children tried to achieve basic computer
skills while playing. Over a period of 4 years it was observed that a learning effect
occurred without great efforts but only when the children had enough free space and
motivating content. What did these children achieve after a week? They were able to
use a computer in a network, to exchange data, create computer graphics, to ponder
philosophically about the computer as a living being and much more.

3.2 Udang experiment

The Udang experiment took place in 1994 in a village in West Bengal in India. In the
course of it a school was equipped with computers. Teachers as well as students
gained their computer knowledge and their skills in private studies. During this
process they only needed a few explanations. In the end the experiment showed that
the teachers as well as the students were able to build up a local database without
help.

3.3 Kalkaji experiment

The previous experiments had prepared the grounds for Hole-in-the-Wall, and thus in
1999 in the south of New Delhi a computer was installed on an outside wall of the
office building of NIIT Limited. The building is adjacent to a slum that is also home
to many children of all age groups. Few children attend school – mainly public
schools – which do not have the best reputations. Only some children are able to
understand or speak English fluently. The children’s perception of the computer has
been observed over three months. During that time no instructions were given. After
this period all children reached the level of computer literacy defined by Mitra and
Rama [12] through trial and error. Furthermore it has been observed that the children
were even able to understand the English alphabet although they had no secured
knowledge of English. After some weeks they were able to draw simple pictures,
create, move and cut a folder. The Kalkaji experiment was continued in other slums
and rural areas with similar results in the following years.

4 Design and target group of a Hole-in-the-Wall

The original Hole-in-the-Wall [13] consisted of a monitor which was built into a wall
and was visible through a glass plate. A touchpad was attached to the wall. Behind the
wall there was a computer connected to the network of NIIT Limited. Hence internet
access was possible. After some time they found out that a touchpad did not work in
the outside reasonably as dust and dirt stopped the computers from working. With
minor modifications, like a reversed attached fan or/ and a cover for the keyboard, it
was possible to work with the computer outside. Furthermore, special software was
developed. So it was possible to monitor the devices over the Internet, adjust desktops
and prevent crashes.
The children were informed about these observations that mainly focused on under-
15-year-olds. Monitors were placed lower to ensure that adults did not make use of it.
Additionally a sunshade was installed. Later on keyboard and mouse were hidden
behind a protective cap that only offered enough space for a child's hand. Furthermore
a bench was set up offering only limited space between the bench and the computer.

5 The Minimally Invasive Education approach (MIE)

The major goal of Hole-in-the-Wall is that a group of children without direct
intervention by others, such as teachers, is able to learn independently. Hence Mitra
has coined the term Minimally Invasive Education (MIE) [4]: “[...] a pedagogic
method that uses the learning environment to generate an adequate level of
motivation to induce learning in groups of children, with minimal, or no, intervention
by a teacher.”
As mentioned previously, [14] schools do foster computer literacy, usually through
ECDL courses or computer science as a separate or optional subject. In these courses
however learning cannot happen spontaneously but only at certain time on a given
day. Papert [14] also laments that classes consist of homogeneous groups with similar
knowledge. Hence the possibility to learn from each other is reduced considerably.
When we speak of learning we think of it in psychological terms:

• Behaviorism: It assumes that the learner is essentially passive and
learning is caused by external stimuli. In other words, the teacher decides
about the content and about the learning methods.

• Cognitivism: In contrast to behaviorism the learner is actively integrated
in the learning process and learning is seen as an internal mental process.
Therefore the teacher decides in cooperation with the student what
methods will be adequate and what contents should be learned.

• Constructivism: The learner is seen as an information constructor. He/ she
brings past experience that is linked to new information. The students will
determine their learning process and outcome on their own.

The last approach represents an essential idea that is taken into account by MIE.
Children acquire their knowledge actively instead of incorporating given knowledge.

This process happens in a playful and experimental manner. Another important aspect
of MIE is learning in groups, so called collaborative learning [5]3: “Cooperative
learning is mainly individually and highly structured. Most participants simply add
their results at the end. In collaborative learning however there is a permanent,
mostly self directed team work of the group available.”

Mitra and Rama [12] found out through the observation of the experiment in
Kalkaji and of subsequent experiments that independent learning had taken place. For
example new functions of the computer were discovered with the graphical user
interface by trial and error. Each step is noticed by other children who try to
reproduce the result themselves. During this process more discoveries are made, other
children notice these steps and this circuit starts again. These events are transferred
among other children with specially invented terms and vocabulary. This exchange of
knowledge takes place in exchange of friendship.

This learning process should not be interfered, but supported. Mitra and Rama [13]
are of the opinion that adults should not interrupt the learning process. Furthermore
the performance of the equipment should be secured permanently. This is done by the
network-based monitoring. Finally learning should take place in heterogeneous
groups [14].

5.2 Results of MIE

How can the success of MIE be measured? For this purpose a unique test, the
Graphical User Interface Icon Association Inventory test was developed. An icon is a
small image and whenever you click on it a computer based command or action is
activated. This test includes 77 icons from the Windows environment. The children
were asked to describe which icon is meant and what happens when you click on it in
their own words. Several NIIT Limited employees tried the test in advance. 70
percent of the icons were described properly no matter whether the symbols had
already been used or not. The children in the slums were tested after 9 months of
computer usage and 40 percent of the icons were identified correctly. For Mitra [13]
this result was proof enough that the children have gained their knowledge and skills
independently.

6 The Digital Doorway – MIE in South Africa

In the meanwhile the MIE approach has been tested outside of India as well as for
example in South Africa. In South Africa the project started in 2002 under the name
Digital Doorway. The ignorance in using technical equipment is a real problem, as
Gush [3], for instance, mentioned: “Even using an ATM presents tremendous
difficulties for many South Africans, either because of ignorance or because of
difficulty in understanding the language in which instructions are provided.”

3 Original publication in German.

The high unemployment rate that prevails in this area is part of the vicious circle.
Finding employment without the necessary computer skills becomes rather difficult.
The big difference between the MIE kiosks in India and the Digital Doorway in South
Africa is the operating system. After initial tests on Windows, they chose Debian
Linux, an open source system. Gush [3] mentioned some advantages of this change,
including the absence of license costs occur, development of open source skills and
the multilingualism of the system. The country hopes that the computer literacy will
increase in the population through this project. Thus the possibility increases that
South Africa will become a leading nation in software development.

7 MIE in computer science education

What options do you have to take the success of MIE into your every day classroom?
A regular course of action when we teach is to start with theory and then continue
with practice and the training of new skills (see [10]). Theory and practice are not
related very often. So the students do not see any relevance in learning the theory.
Learning through trial and error opens the concept for implementing MIE in schools.
This method was introduced by Thorndike an important contributor of behaviorism.
The scientist observed how human and animals respond to an unknown situation,
namely by random behavior. Different behavior patterns are tested to reach a certain
learning success. If a behavior is exploited successfully, it will be intensified and
reapplied in similar situations. Thorndike [1] emphasizes that a reliable learning
success can only be reached by learning by repetition which means through iterated
practice.

Another concept close to MIE is known as Learning at the model introduced by
Bandura. Humans do not only learn through the consequences of behavior, but
through observation [14]. Thus knowledge or observed behavior can be passed over to
others. If it appears useful, the learner will try to imitate the behavior. If they succeed,
the behavior will be adopted. Bandura’s theory is often seen as bridge between
behaviorism and cognitivism.

In computer science, especially when you learn programming, the concept of trial
and error is not very welcome. It can be compared with pointless trying. This
technique means that you start to write your code instead of developing a model in the
beginning. Maybe this concept is not the best for learning how to program, but it can
be worth considering when you learn how to use the so called standard software.
Instead of an ECDL course, you can give your students a specific aim: The result of
our next lessons will be X, how can we reach X? We can show them how to use the
pre-installed or online help applications for a software package. And we can ask
ourselves how we can ask the questions to get the right answers.

Although one can see the advantages of MIE, there exist several disputes about the
pros and cons as for example in Kirschner, Sweller and Clark [9]. They use the term
minimally guided instruction and are of the opinion that [9, p. 76]: “[…] minimal
guidance during instruction is significantly less effective and efficient than guidance

specifically designed to support the cognitive processing necessary for learning.”
Their main area of concern is that minimally guided instruction ignores the
characteristics of working or long-term memory and no research supports the
technique so far.

Their concern is reproducible. In the beginning students are not fully aware of the
fact that they are teaching themselves and that they do not get instructions. What they
will get is help, when they get lost. Maybe it is not the best way for every student, as
some need clear instructions to reach their aim. But all the others learn more than just
clicking, they try to understand the underlying concept. You show them how to help
themselves and because they find their way on their own it will be something they
will not forget.

Brunstein, Betts and Anderson [2] emphasize this point and identified three factors
that lead to successful learning with minimal guidance: constrained search space,
practice and combinatorial structure. Further they stated [2, p. 801]: “…that
minimally guided discovery learning can be successful if the cognitive demands are
limited. One of the benefits of discovery learning is that the processes of generating a
solution can lead to a characterization of the domain that will help students
generalize when they face a new problem situation.” So if one limits the search space
and gives enough time for finding the right answers MIE is an alternative.

Another possibility to integrate MIE in everyday school life are open-access-
workstations in schools. In many schools such computers already exist on the
corridor. Not only older students use these computers, even the younger ones are
really interested. It is noteworthy that usually several pupils group around a device,
play around together, look for something in the internet and present each other what
they have just found out. Personal observations have revealed that students had no
major problems either if the operating system was not Windows, but a Linux system
with a graphical interface.

8 Summary

The MIE project has shown and is still showing that children are capable of
teaching themselves even complex facts. It mainly requires sufficient time and the
necessary materials to implement the concept in regular classrooms. MIE offers one
more option to get kids to integrate new information with existing information. A
concept, one needs to keep in mind.

As conclusion, a further idea of Mitra and Rama [12], how MIE can be
implemented in school: “The educational application of the above theories lie in
creating curricula that matches and also challenges children’s understanding,
fostering further growth and development of the mind.”

Special thanks to Karl J. Fuchs (University of Salzburg, Austria) for the time he spent
discussing some of the issues mentioned in this paper.

References

1. Brühlmeier, A.: Aspekte der Lernpsychologie.
http://www.bruehlmeier.info/lernen_kopie.htm (April 15, 2011)
(1994).

2. Brunstein, A.; Shawn, B.; Anderson, J. (2009): Practice enables successful learning
under minimal guidance. In: Journal of Educational Psychology, 101(4), 790-802.

3. Gush, K. et. al.: The Digital Doorway – minimally invasive education in Africa.
http://www.digitaldoorway.org.za/publications/ICT in
Education conference paper- The Digital
Doorway_March_2004.pdf (April 15, 2011) (2004).

4. Hole-in-the-Wall Education Ltd. [Ed.]: Minimally Invasive Education.
http://www.hole-in-the-wall.com/MIE.html (April 15, 2011) (2007).

5. Hinze, U.: Computergestütztes kooperatives Lernen: Einführung in Technik,
Pädagogik und Organisation des CSCL. Münster: Waxmann (2004).

6. Hubwieser, P.: Didaktik der Informatik - Grundlagen, Konzepte, Beispiele. Berlin:
Springer, 2001.

7. Inamdar, P.: Computer skills development by children using “Hole-in-the-Wall”
facilities in rural India. In: Australasian Journal Technology, 20(3), 337-350.
http://www.ascilite.org.au/ajet/ajet20/inamdar.html (April
15, 2011) (2004).

8. Judge, P.: A lesson in Computer Literacy from India’s Poorest Kids’ New Delhi
physicist Sugata Mitra has a radical proposal for bringing his country’s next
generation into the Info Age.
http://www.businessweek.com/bwdaily/dnflash/mar2000/nf003
02b.htm (April 15, 2011) (2000).

9. Kirschner, P.; Sweller, J.; Clark, R.: (2006): Why minimal guidance during
instruction does not work. In: Educational Psychologist, 41 (2), 75-86.

10. Mitra, S.: Children and the Internet: New Paradigms for Development in the 21st
Century. http://www.hole-in-the-wall.com/docs/Paper03.pdf
(April 15, 2011) (2000).

11. Mitra, S.: Minimally Invasive Education for mass computer literacy.
http://www.hole-in-the-wall.com/docs/Paper01.pdf (April 15,
2011) (2000).

12. Mitra, S.; Rana, V.: Children and the Internet: Experiments with minimally invasive
education in India. In: The British Journal of Educational Technology, 32(2), 221-
232. http://www.hole-in-the-wall.com/docs/Paper02.pdf (April
15, 2011) (2001).

13. Mitra, S.: The Hole-in-the-Wall.
http://www.niit.com/niit/ContentAdmin/images/sugata/DQ--
Hole in the Wall.pdf (November 07, 2007) (2004).

14. Papert, S.: Computer in the Classroom: Agents of Change.
http://www.papert.org/articles/ComputersInClassroom.html
(April 15, 2011) (1996).

15. Plassmann, A.; Schmitt, G.: Lernen am Modell nach Bandura.
http://www.lern-psychologie.de/kognitiv/bandura.htm (April
15, 2011) (2007).

16. Schubert, S.; Schwill, A.: Didaktik der Informatik. Spektrum, Heidelberg (2004).

Exclusive Courses for Inclusive Education

Ľudmila Jašková

Department of Informatics Education, Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava, Slovakia, jaskova@fmph.uniba.sk

Abstract. The paper deals with the professional training of teachers of
informatics to prepare them to use digital technologies for teaching students
with special educational needs in mainstream schools. We have developed new
courses to improve teacher’s competences. We describe the contents and forms
of these courses. At the end of the paper we present results of our research
evaluating the efficiency of these courses.

Keywords: special educational needs, assistive technologies, teacher’s
competences.

1 Introduction

Digital technologies (DT) are widely used in many professions and also in everyday
life. Independent life, further education and professional success of people with
impairment are possible only in case following conditions are fulfilled:
− They can use modern digital technologies in their study and everyday life.
− They can study at mainstream schools integrated in the society.

Many people with special educational needs (SEN) study integrated at mainstream
schools but their teachers are not prepared good enough to teach them and to use
digital technologies for this purpose. Our department plays an important role in
development of study plans for future teachers of informatics. We have started to
investigate how to change these plans so that our graduates were better prepared for
the inclusive education of people with SEN. Therefore we have performed a research
by means of which we tried to answer following questions.
− Which teacher competences are important for the inclusive education?
− How to change the study plans so that informatics teachers were more competent?
− Will these changes bring required results?
You will successively find our answers in further parts of this paper.

2 Teachers and their competences in inclusive education

Technology is a versatile tool for handling information and for communication now.
Information and communication technologies are therefore essential tools for
inclusion [3].

mailto:jaskova@fmph.uniba.sk

For learners with SEN, technology can facilitate the process of knowledge
absorption if appropriately utilized within their individual education plans.
DT not only make education easier for students with SEN but they are necessary in
integrated schools. Therefore all teachers should know [5]:
− using DT as a tool for transformation of study materials into an accessible form

for students with SEN,

Fig. 1. Bar-chart in a tactile form

− how can a student with SEN use DT for taking notes, for his/her project work, for
testing of knowledge, and for communication with teachers and schoolmates,

− how can mainstream teachers or non-disabled students use DT to discover the way
of life of their disabled students or schoolmates (where it is possible to find
information about disabilities on the web, where are visual or hearing simulations,
where to find information about Braille and sign language, etc).

Fig. 2. Teacher competences in inclusive education

3 New courses for informatics teachers

To improve competencies of mainstream teachers we have made several changes in
educational study at our faculty and we also have prepared online course for
mainstream teachers of informatics [5].

ICT as a supporting tool

ICT as a tool for com-
munication and presen-
tation

ICT as a tool for inclusion

3.1 Modifications in educational study

We have modified the study plan for educational study of informatics in the following
way.
We added new topics to existing subjects, e.g. we added the topic about ways of using
computers by disabled students into the basic course aimed to gain basic computer
skills, etc.
Besides the modification of existing subjects we offer new eligible courses as follows.
1. Integrated education of people with SEN – basic course about people with SEN

and potential problems with their integration in mainstream schools. This course is
designed for all students of our faculty.

2. ICT in education of handicapped students (ICTH course) [4] – basic course
about digital technologies for students with SEN (assistive technologies, e-
accessibility, adaptations of study materials, universal software design, etc.). This
course is primarily designed for students of educational study of informatics.

3. Accessible web design [1] – advanced course about disabled users of the web,
critical objects on the web, accessible web design and about accessibility tests.
This course is primarily designed for students of educational study of informatics.

4. Accessible software design – advanced course about universal software design.
This course is designed primarily for students of applied informatics.

Further we will describe courses focused on students of educational study of
informatics – ICT in education of handicapped students and Accessible web
design.

3.2 Course on ICT in education of handicapped students

Course on ICT in education of handicapped students consists of these topics [4].
1. Main advantages of using DT in education of students with SEN.
2. Visually impaired people and assistive technologies for visually impaired people.
3. Methodology of teaching computer skills for the visually impaired students.
4. Hearing impaired people and assistive technologies for hearing impaired people.
5. Methodology of teaching computer skills for hearing impaired people.
6. People with mobility problems and assistive technologies for them.
7. People with cognitive problems and their way of using computers.
8. Accessible web design.
9. Accessible web testing.
10.Adaptation of study materials for students with SEN.
11.Principles of universal software design.
12.Digital technologies in activities facilitating integration of students with SEN into

mainstream schools.
The aim of this course is to make an introduction to the world of students with

SEN and to answer the following questions.
− What does it mean to be impaired?
− How do visually impaired students see?
− How do hearing impaired students hear?
− How do students with dyslexia perceive a text?

− How do students with low visual comprehension perceive pictures?
− How do some objects look like for people with attention problems?
− How to improve orientation in study materials for people with memory problems?

Table 1. Simulations of various vision difficulties.

A simulation of vision
with glaucoma.

A simulation of vision
with macular degene-
ration

A simulation of vision
with diabetic retino-
pathy.

A simulation of
vision with advan-
ced cataract.

− How do students with SEN use computers? (Attendants of the course come into a
contact with people with SEN. They observe how the others use computers and
they have an opportunity to try to use computers in the same way as people with
SEN do.)

Table 2. Assistive technologies for people with SEN.

Unsighted person is
using the screen reader

A person with motor disability is
using a mouth stick

A person with low vision is
using a TV magnifier

− How to prepare study materials for people with SEN?
− How to access pictures and scientific information if someone is person with SEN?
− What are critical objects on the web?
− How to use ICT in activities which facilitate integration of disabled students into

mainstream schools?

3.3 Course on Accessible web design

Course on Accessible web design consists of two parts.
The first one is focused to handicapped users of the web. The aim is to answer

following questions [11].
− How do they use computers?

− How do they use the web?
The second part of the course is dedicated to critical objects on the web [1], [2],

[6], [8], [9], [12], [13]. It answers following questions.
− How to make them accessible?
− How to test their real accessibility?

This course contains several special features – e-learning, learning by doing,
examples of bad and good practice, discussions about projects. We shall briefly
describe these features now.
E-learning

E-learning courses have becomed to be very popular because connection to the
internet is not a problem for most of potential attendants. This form of learning saves
time and allows studying whenever and wherever anyone wants.

Duration of the course is thirteen weeks. Each week is dedicated to the different
topic.

From the organizational point of view tasks of each week have following structure.
− At first the study materials and related exercises are published in Moodle

environment.
− Discussion on the topic is held in discussion forum.
− Lecturer evaluates solved exercises and sends his comments to attendants.
− Sample solutions of exercises are published in Moodle.

There are some special exercises in the end of the course.
− Attendants work on a project in the last part of the course.
− Attendants pass a test in the end of the course.
Learning by Doing

The course aims to teach attendants the accessibility standards for web pages.
Attendants discover these standards on their own. They use computers in the same
way as disabled users do.
Examples of bad and good practice

Attendants analyze many web pages – properly chosen examples of bad and good
practice. Besides that attendants have to find pages with specified features (e.g. with
wrong navigation or wrong text structure, etc.) or they find wrong features on
specified web pages.

Fig. 3. Web page of an unnamed secondary school – Items of active sub menu are mixed with
the main content of the web page. We use this web page as an example of the bad practice.

Discussion about projects
Attendants develop accessible web documents in the last third of the course and

they perform tests of their accessibility. Web documents are thereafter classified by
the other attendants and the whole group discuss about documents in discussion
forum.

4 Evaluation research

We have performed qualitative evaluation research to answer following questions.
− Which competences of attendants were developed or improved during the courses?
− Are courses good enough to acquire necessary knowledge and skills?
− Are study materials satisfactory?
To answer these questions we have analyzed these types of data:
− solutions of exercises and evaluation of the final project and the final test,
− multiple choices questionnaire performed at the beginning of the course,
− interview done at the end of the course,
− contributions to discussion forums.

4.1 Evaluation of the course on ICT in education of handicapped students

We have performed 6 runs of the ICTH course (since the year 2006 till 2011). The
average number of attendants was ten.

During our research we have found following information about our attendants.
− They have learned how impaired people perceive the world and how they use

computers but they should have contacts with individual people with SEN more
frequently to gain more experiences.

− They have acquired familiarity with assistive software for visually impaired
people.

− They have learned accessibility principles for web pages but they were able neither
to do proper accessibility tests nor to create an accessible web page.

− They have acquired familiarity with different formats of study materials suitable
for people with SEN but they still were not able to create a suitable study material
for them.

− The most difficult for them was to understand the way how people with learning
difficulties (problems with attention, memory and text perception) access
information. In case of people who are unhearing since their birth it was similar.
Attendants couldn’t imagine that these people have problems with understanding
texts and also to communicate with hearing people. The easiest for them was to
understand the situation of motor and visually impaired people.

Fig. 4. The web page of an unnamed secondary school contains too much information for

people with attention problems. Our attendants could not see this problem.

4.2 Evaluation of the course on Accessible Web Design

We have performed two runs of the course for practical teachers from mainstream
schools. We were surprised by the high interest of teachers in the course.
Unfortunately, we could manage just 20 to 30 attendants in one run of the course.

In the first run there were 23 teachers (22 teachers of informatics and one teacher
of art). The second run attended 29 teachers (21 teachers of informatics and 8 teachers
of other subjects) and 7 students of informatics.

During our research we have found following information about our attendants:
− They have learned problems of handicapped web users.
− They have gained basic information about testing and development of accessible

web pages.
− They have gained the ability to look at web pages in a critical way.
− They wanted to redesign their formerly created web pages into accessible form.
− They have found it important to teach their students and colleagues to make

accessible documents.
But there were also several limiting factors with negative consequences.

− Many attendants had not even the passive knowledge of English so we couldn’t use
web pages written in English (e.g. online simulators, online accessibility testing
tools).

− Attendants couldn’t use web browsers and search engines effectively enough.
− Most of teachers of informatics had no skills in web development and they knew

nothing about HTML, CSS and Java Scripts.

Fig. 5. Web page of an unnamed primary school with wrong contrast – texture on the

background makes the text less readable. This web page has not changed yet, despite of the fact
that the teacher from this school attended our course.

5 Conclusions

Our experience with above mentioned courses showed that attendants found these
courses useful and interesting.
They have learned how to percept the world in the way of people with SEN.
They have learned that there is no need to protect disabled students but better make
equal conditions for them as for their intact schoolmates.
They have learned that it is important to prepare their students for inclusion also in
case they have no student with SEN in the classroom because each of us has

occasional contacts with somebody with some kind of difficulty. Therefore we will
try to perform our courses in a closer cooperation with people with SEN.
We plan to expand our activities to non-disabled pupils from primary and secondary
schools. We have included some texts and exercises concerning people with SEN to
their text books of informatics. We believe that this will help them to be more tolerant
and sensitive to other people needs.

References

1. Accessible Web Development (in Slovak: Prístupnosť elektronických dokumentov),
http://edi.fmph.uniba.sk/~jaskova/ped/.

2. Bernadini, A. et al. Web for All: A User-Centred Design Approach for Making More Usable
and Accessible Web Sites. In The Good, The Bad and The Irrelevant conference. Helsinki,
Finland, 3-5. September 2003. (2003), http://goodbad.uiah.fi/info/000_general_info.

3. Blaimers, M. Enabling Technology for Inclusion. London: Paul Chapman Publishing Ltd,
A SAGE Publications Company. 194 p. ISBN 1-85396-394-1, (1999) .

4. ICT in education of handicapped students (in Slovak: IKT vo vzdelávaní zdravotne
postihnutých), http://edi.fmph.uniba.sk/~jaskova/ IKTH.

5. Jašková, Ľ. Informatics teachers and their competences in inclusive education. In
Miesenberger, K. et al. (Eds.). Computers Helping People with Special Needs. 10th ICCHP,
Linz, Austria, July 11-13, Proceedings, Berlin; Heidelberg; NewYork: Springer. 2006. pp.
552-559.ISBN, (2006) .

6. Course on the accessible web design (in Czech: Kurz tvorby přístupného webu),
http://www.h1.cz/kurz-pristupnosti.

7. Miesenberger, K. et al. (Eds.). Computers Helping People with Special Needs. 10th ICCHP,
Linz, Austria, July 11-13, 2006, Proceedings, Berlin; Heidelberg; NewYork: Springer. 2006.
p. ISBN 3-540-36020-4. (2006) .

8. Section 508, http://www.section508.gov.
9. Špinar, D. Developing the accessible web pages (in Czech: Tvoříme přístupné webové

stránky). Praha: Zoner Press. 360 p. ISBN: 80-86815-11-0, (2004) .
10.The European Union Disability Strategy, http://europa.eu.int/comm

/employment_social/soc-prot/disable/strategy_en.htm.
11.Web Accessibility in Mind, http://www.webaim.org.
12.Web Content Accessibility Guidelines 1.0, http://www.w3.org/TR/WCAG10.
13.Web Content Accessibility Guidelines 2.0, http://www.w3.org /TR/WCAG20.

Supporting students’ development of computer science

skills

Wanda Jochemczyk and Katarzyna Olędzka

 Computer Assisted Education and Information Technology Centre, Raszyńska 8/10,

02-026 Warsaw, Poland

{wanda, katarzyna}@oeiizk.waw.pl

Abstract. The aim of this article is to present some ideas connected with

introducing students into programming world and to share our experience. In

the first part we present the idea of introducing students to learning algorithmics

by solving puzzles and playing games or other kind of thought-provoking tasks.

In the second one, we present the idea of first steps in programming describing

microworlds for young learners. By steering a turtle children learn mathematics

and develop their programing skills. Next, we show some examples of

problems for more matured learners. In our teaching practice we prepared

multilevel or open tasks to encourage students to gain new knowledge. We

hope that sharing these examples will stimulate reflection.

Keywords: teaching, algorithmics, computer science

1 Introduction

As teacher trainers in Computer Assisted Education and Information Technology

Centre in Warsaw we organize courses and workshops for teachers. Our institution

provides support teachers’ professional development. We also work with

schoolchildren both directly by organizing e-learning courses or contests for them,

and indirectly by helping teachers in the didactic work.

The aim of this article is to present some ideas connected with introducing students

into programming world and to share our experience. We present our article in four

parts. In the first one we describe the concept of preparing to learning algorithmics by

solving interactive thought-provoking tasks. In the second one, we present the idea of

first steps in programming while in the third and fourth we present problems for more

matured learners. We hope that sharing experience and examples will stimulate

reflection.

2 Non-creative algorithms and creative thinking

Discussing matters related to learning and teaching algorithmics we find challenging.

We use algorithms which are defined as systematic procedure that produces – in a

finite number of steps – the answer to a question or the solution of a problem [5].

Thus, they should be correct, unambiguous, completed and if possible efficient. If one

wants to be a programmer and wants to write programs, should be constructive and

creative to discover and implement solutions to various problems. Presenting an

effective method of solving given problems expressed as a finite list of well-defined

instructions is quite an interesting task. Learners should focus on exploring ideas,

generating possibilities, looking for many correct answers and be able to choose the

best one. An introduction to such activities can be solving puzzles and playing games

as introduction to computational thinking and learning programming. This practice

helps students to move their thinking to abstract level, introduce problem-solving

strategies, develop creativity and attract more interest [4]. Examples of such

applications which were prepared in our project for early school teaching are

presented below.

Fig. 1. With mathematics in allotment Fig. 2. In the same colour

Fig. 3. On the track Fig. 4. On the other side of mountains

The above-mentioned projects similarly to computer games are a specific form – they

teach skills such as data manipulation, strategic planning and decisions making.

Players win by successfully navigating and meeting challenging tasks. In strategic

games children’s emotions strongly affect their motivation. When the children play

first time, they usually fail, and then they have to do it over and over again, until they

master the skill. In the end, they gain the knowledge. Thus, they win. [6]

3 First steps in programming

Another way of learning with computers is trying to talk with them. Both humans

and computers have their own languages. As children from early years learn how to

read, write and count, nowadays they also naturally acquire some ICT skills. By using

a computer, they learn how to write and draw or find useful information on the

Internet. They can also control how the turtle moves on the screen. In pre-prepared

microworlds, they start with simple drawings. A turtle can go forward, backward, turn

right, left and change the colour and width of the pen. When a child clicks on a button

the turtle executes the corresponding command. The next step is to drag and drop

Logo instructions to make a list of commands. Pupils learn how to create their own

procedures. According to Papert: Once programming is seen in the proper

perspective, there is nothing very surprising about the fact that this should happen.

Programming a computer means nothing more than communicating to it in a

language that it and the human user can both “understand.” And learning languages

is one of the things children do best. Every normal child learns to talk. Why then

should a child not learn to “talk” to a computer?[1] Moreover, such projects

stimulate logical thinking and are good introductory exercises for learning

algorithmics.

To exemplify children’s activities some drawings of specific shapes can be shown.

Even with simple commands, a teacher can prepare a challenging set of tasks. Not

only mathematical knowledge does count, but also programming skills are required.

Even small children try to automate their work, by applying copy-and-paste strategy

or by using the repeat instructions.

Fig. 5. Children’s activities

In practice the most problematic area of promoting programming at school is to

encourage teachers to teach such lessons. Most of them are not familiar with

programming computers and what is more important they have a barrier to perform

such lessons in their schools. It raises a question what can be changed in teacher

education to make programming more popular? Observing the school practice there

are many children who want to deepen and broaden their programming skills but they

suffer from lack of support from adults. We get emails requesting help.

4 Quite difficult problems

The older the children are the more sophisticated tasks are required. Young

teenagers build their own knowledge by solving appropriate for their age problems.

They learn how to use efficiently the most important procedures of turtle graphic or

find recurrent elements to apply iteration and recurrence. To deal with more

complicated problems they have to divide a problem into sub-problems to implement

subsequent procedures. Mathematical knowledge helps them to calculate proportions,

scale a drawing and establish measure of angles.

Fig. 6. Examples of tasks [7]

Solving such tasks requires accuracy and patience, one has to test solutions step by

step and the final result. I has to be done with changing values of parameters with

special consideration of boundary conditions. From the teacher’s perspective, it is

very interesting to analyse various solutions got from students. They are so innovative

in their way of thinking. However, the main problem teachers usually face at this

stage is how to motivate students to a long term effort.

5 Multilevel and open tasks

In some cases there is a need from multilevel tasks which can be solved by

beginners and more experienced students. Some examples were shown in “Take up

the Challenge – reflection on POLLOGIA Competition”. [3] We plan such tasks to

meet expectation of different level preparation and experience from the students’

perspective.

Example of task – the route [8]

A turtle moves on a triangle board starting from the lowest yellow triangle. It can

move to the left and right, but it cannot leave the board. When it is not able to move,

the movement is omitted. Write a procedure ROUTE :n :description, after calling it

on the screen it will we drawn two-coloured board with marked route of the turtle.

Parameter :n defines the number of green triangles in the highest row, and the

:description presents the route of the turtle.

The descriptions consist of small letters l (the movement to the left) and r (the

movement to the right). The length of the big triangle is 500. If you know how to do it,

do not draw these parts of the route, in which the turtle goes on its previous position.

If drawing the turtle route is too difficult for you, draw only the board.

ROUTE 5 "lrrlr ROUTE 7 "lrlrrlrlr

ROUTE 6 "rrrrrllrrll ROUTE 4 "lrrlrrrrrrll

Fig. 7. Task The route

In the example above one can draw only triangles. The next step is to draw the way

the turtle moves. More experienced students can restrict movements only to the board.

The most difficult part of this task is to find cycles and eliminate them.

A good way to interest students and develop their skills is to give them some open

problems with some guidelines. In our e-learning courses we prepared such tasks to

encourage students to gain new knowledge also by surfing the Internet. The example

of such task is “Break the Cesar’s message”. The problem is connected with ciphering

information. It is a type of substitution cipher in which each letter in the plain text is

replaced by a letter some fixed number of positions down the alphabet. For example,

if there is a key equal 3 and we want to cipher letter a it would be replaced by d, d by

g, and so on. The method is named after Julius Caesar, who used it to communicate

with his generals. Ciphering is quite an easy task. The more difficult one, is to break

the code without knowing the key.

Fig. 8. A screenshot from the application Break the Cesar’s message

The prompt which we give students is to find typical frequency of letters and to

compare it with frequency of deciphered message for different keys. The value of a

key which fit the best is most probably the correct one. Another example of open task

is to draw mountains with option of covering or to explore L-systems.

One can ask what will students learn by making such projects? They will learn

some technical things, for example to programme computers. Moreover, they will

acquire knowledge traditionally incorporated and even not included in the school

curriculum. For example in order to decipher message, they have to learn about

frequency of letters in their language and where to find this information, in the project

connected with drawing mountains some geometry knowledge is needed. They will

develop some psychological, social and moral aspects of thinking in other projects.

Most important of all in my view is that children will develop their sense of self and of

control. For instance, they will begin to learn what it’s like to control their own

intellectual activity. [2] It is a good instrument to create open exercises, stimulate

thinking and make one’s own creative activity.

From our own perspective there is a difficulty in finding or in creating such tasks.

There is a lack of collections of such problems which are either approachable for

students on one hand and developing for the other. Some source of such tasks are

programming contents both Polish and international. We hope in the nearest future

there will be more and more student friendly places with such problems so that they

can find the most interesting for them.

6 Conclusion

We live in a society which is information centred and computerized. Many people,

especially young, use for their everyday life computers. Some of them know or learn

how to programme them. Apart from reading, writing and arithmetic, such skills like

thinking, problem solving, synthesising, communicating really count. Our response to

21st century demands is teaching algorithmics from early stages of children

development in a constructvistic way to help them become mature and knowledgeable

digital citizens and not to get lost in this modern world.

References

1. Papert, S.: The Mindstorms: children, computers, and powerful ideas. Basic Books, New

York (1980)

2. Papert, S., The Connected Family: Bridging the Digital Generation Gap, Longstreet Press

(1996)

3. Borowiecka A., Borowiecki M., Jochemczyk W., Oledzka K., Samulska A., Take up the

Challenge – reflection on POLLOGIA Competition. In: Proceedings of Constructionism

2010., Paris (2010)

4. Levitin A.: Puzzles and Analysis of Algorithms. In: 36th SIGCSE technical symposium on

Computer science education, ACM New York (2005)

5. Encyclopedia Britannica, http://www.britannica.com

6. Learning by Playing, http://www.lauerlearning.com/learning

7. Logo competition for primary school portal, http://minilogia.oeiizk.waw.pl

8. Logo competition for gymnasium portal, http://www.pdp.edu.pl

Automated Online Identification of Learner Problem

Solving Strategies – A Validation Study

Ulrich Kiesmüller1 and Torsten Brinda1,

1 University of Erlangen-Nuremberg, Didactics of Informatics, Martensstr. 3,

91058 Erlangen, Germany

{Ulrich.Kiesmueller, Torsten.Brinda}@cs.fau.de

Abstract. In the field of learning programming, environments providing visual

programming are employed in computer science education. Learners have to

complete tasks using these environments. To guide learners to an independent

problem solution from a constructivist perspective [2] teachers have to find out,

what the learners’ concepts are. For this purpose it is interesting to identify

learners’ problem solving strategies. As described in previous work [1, 2] a

system based on pattern recognition methods was developed to identify

automatically the learner's problem solving strategy. A validation study of this

method and the software implemented is described in this article. In addition to

the results of the software, data from thinking aloud studies was used. The data

collected was evaluated using empirical research methods based on Cohen’s κ

[5]. In this work we compare the automatic identification of learners’ strategies

with the human expert ratings and find the high agreement of κ = 0.747.

Conclusions concerning the validation of the technique and some remarkable

observation in the data are drawn.

Keywords: Computer Science Education, Secondary Education, Problem

Solving Strategies, Qualitative Content Analysis.

1 Introduction

During their first steps in programming, learners solve small programming tasks

often using learning and programming environments developed for certain age

groups, such as Alice [6], Scratch [17] or Kara, the programmable ladybug [20].

1.1 Observed Problem Solving Strategies

In this context, different strategies of solving the given problems can be observed.

An obvious aspect to differentiate the various strategies is the way of structuring the

problem. There are learners, who structure the problem before solving, whereas others

solve the problem in not prestructured single steps. The first group contains those

learners who are using a top down strategy in terms of[14]. First of all they construct

2 Ulrich Kiesmüller and Torsten Brinda

Fig. 1. Structure of a problem from the view of learners using a structured problem solving

strategy.

(or evoke, if present in solvers’ long time memory [19]) the problem space. They

structure the problem as a whole. Therefore they divide the problem into several

partial problems, where necessary, these again in smaller subproblems and so on, until

they reach the partial solutions. In this way they approximate to the solution in layers

(Fig. 1 and left side of Fig. 2). If they complete the set task employing Kara, the

programmable ladybug, they will create all states required at first. Subsequently they

justify Kara’s sensors, with that all branches of the program are created. At last they

fill in and if necessary they edit the commands to solve the small subproblems finally.

In practice the observation of a learner, who uses a top down strategy will not show

exactly this sequence of learner-system-interactions (LSI) but a very similar one. At

this point one must take into account that this strategy is hardly to be maintained even

by programming experts like described in [10].

The second well structured working group contains learners, who solve the

separate subproblems one by one like shown on the right side of Fig. 2. At every step

they go from the problem as a whole all the way to the solution layer. This strategy is

Fig. 2. Learners’ approach to a problem solving using the top down strategy (on the left hand)

or the bottom up strategy (on the right hand).

Automated Identification of Problem Solving Strategies – A Validation Study 3

called below bottom up strategy in terms of [14]. By using the Kara environment, this

strategy manifests itself in creating one state and set the sensors for only one branch

before adding the commands in exactly this branch. Subsequently these steps are

repeated. In this manner, the learners complete the tasks set by solving the

subproblems one by one. The sequence of creating/editing states, editing branches,

adding commands is repeated until every single subproblem is solved.

Even in the group of learners, who are solving the problems in not pre-structured

single steps, there are two different types of strategies.

First of all we find learners, who focus on one single programming step and try to

optimize it (loops in Fig. 3). Therefore they verify each step of their incremental

solution. With a general concept in mind how their program should work so far, they

start the program execution. As soon as they recognize whether the current tackled

subproblem is solved correctly or not, they actively stop the program execution. They

correct their mistakes if necessary and execute the program again. In case of a correct

partial solution these learners look for the best next step to proceed (dotted arrows in

Fig. 3). In this way, they bring themselves closer to the solution layer. But they not

necessarily follow one path like learners using the bottom up strategy. In fact they

change from one branch to another only focusing on the step, which is the best to

proceed from their point of view. This strategy is called below hill climbing strategy.

Fig. 3. Incremental approach to a problem solving using the hill climbing strategy.

Their sequences of LSI using Kara show frequent program executions followed by

single actions like adding single commands or editing a single branch. There are only

rare system error messages because the learners do not need them to proceed in

programming. Messages only appear if the learners are not fast enough to stop the

program when recognizing an error.

The other strategy in this group is the well known trial and error strategy. In this

case learners focus on a single step again, but they have no general concept in mind

when they execute their program. Thus they frequently produce system error

messages. They are not actively controlling their programming progress but only

reacting to the system messages. They jump around the different branches in a rather

random order. Therefore there is no strict approach to the completion of the task. It

may be that the learners work at the same programming step again and again without

any progress (Fig. 4).

4 Ulrich Kiesmüller and Torsten Brinda

Fig. 4. No strict approach to a problem solving using the trial and error strategy.

1.2 Related Work

In previous studies [13] the chronology of LSI, which were categorized before was

reported in log files. All of the learners observed, showed one of the four strategies

described in Section 1.1 at a time. But only a few of the observed sequences of LSI

match exactly with the ideal learner system interaction pattern mentioned above.

From time to time there are missing single interactions, there are appearing additional

interactions or some single interactions are replaced with others. An example for the

bottom up strategy is shown in Tab. 1 – on the left hand an ideal sequence of LSI, on

the right hand a real observed sequence. The sequences are very similar but differ in

some LSI. Finding the most probably strategy which causes a certain observable

sequence of LSI is a problem similar to problems well known in the field of pattern

recognition. In [13] a software was designed and implemented in 2009 which

identifies learners’ problem solving strategies automatically with the help of pattern

recognition methods (hidden markov models).

Table 1. LSI-sequence for the bottom up strategy (ideal versus real observed).

ideal observed

TRANSITION ADD TRANSITION ADD

TRANSITION CHANGE

SENSOR SET SENSOR SET

SENSOR SET SENSOR SET

 TRANSITION CHANGE

 PLAY

 STOP

COMMAND ADD COMMAND ADD

COMMAND ADD COMMAND ADD

COMMAND ADD COMMAND ADD

Automated Identification of Problem Solving Strategies – A Validation Study 5

This article is structured as follows. After a short introduction, we give a brief

insight to the problem solving strategies observed during the studies described here.

Subsequently previous work is shown. In Section 2, we describe the design of the

study including the research questions, the research field and the methodology. In

Section 3, the results using the proposed method are analyzed. In Section 4 we discuss

the results. Possible conclusions are drawn in Section 5. We end with an outlook on

future work presented in Section 6.

2 Study Design

A validation of the results of the strategy identification software requires a

different way of obtaining information about the learners’ problem solving strategies

than observing the problem solving process step by step as it is done by the research

software. A first idea was to get information about the learners’ problem solving

strategy with the help of questionnaires, which the learners have to fill in. The

questionnaires are based on the fundamental concepts of Ajzen’s and Fishbein’s

Theory of Reasoned Action and Theory of Planned Behavior [1]. In this way

information about the learners’ problem solving strategies can be used without

considering certain steps during the problem solving process. Because of the

necessary extent of those questionnaires, there would be a large impact to the

learner’s problem solving process. To avoid this, another observation method was

employed at last. We decided to use the “thinking aloud” method. Learners using the

Kara environment to solve the set tasks are observed by a researcher, who records all

statements, which the learners make during the problem solving process, employing

shorthand notices. At two times during a practical course for girls at the University of

Erlangen-Nuremberg in the years 2009 and 2010 a group of seven learners (14 to 15

years old) at a time were observed at working with the Kara environment and

completing the set tasks. One session takes 21.5 min in average (minimum: 15 min,

maximum 25 min). The learners solved tasks of the collection included in Kara. These

tasks are categorized concerning their difficulty in groups “easy”, “medium” and

“hard”. Additionally they got two complex problems – the first, enabling the ladybug

to find the exit of a random labyrinth; the second, continuous inverting a pattern of

fields with or without leaves. All learners can choose at any time which task they

complete. Subsequently some records do not start exactly with the beginning of

working on a certain task and respectively do not automatically end, when the current

task is completed.

2.1 Research Questions

“Teachers should meet learners where they are” is an important aspect from a

constructivist view [2], lightly modified from where we tend to “... meet learners

where they walk”. From this vantage point it would be helpful to find out, to what

extent it is possible to identify automatically learners’ problem solving strategies.

Teachers can adjust their teaching style to the learners’ strategies. The system

6 Ulrich Kiesmüller and Torsten Brinda

messages of learning and programming environments can be adapted to the learners’

problem solving strategies as well. In this article is searched for an answer to the

questions:

• To what extent is it possible to identify learners’ problem solving strategies using

the methods mentioned above?

• To what extent do the results of the identification software accord with analogue

data collected with the “thinking aloud” method?

2.2 Research Field

Problem Solving Strategies. In the field of problem solving there are known many

various strategies and differing denotations, resulting from many different points of

view. The four strategies used for the studies described in Section 1.1 result from a

look at the overlap of publications like [4], [14], [19] and [23] concerning problem

solving strategies mentioned there. The labeling for the four strategies used here, was

created having regard to the varying denotations found in the publications, but as

similar as possible to them.

Collecting Data. All learner-system-interactions relevant to learners’ problem solving

process are recorded in log-files by a tracking module included in the identification

software. Like shown in [13] the recorded learner-system-interactions are categorized

for further data analysis considering results and methods described in [3] and [11].

Additionally in the studies described here the learners’ statements while “thinking

aloud” are recorded by a human researcher like mentioned in Section 2.

Pattern Recognition. Like mentioned in Section 1.2 identifying the most probably

problem solving strategy belonging to an observed sequence of learner-system-

interactions is a similar problem to those, which occur in the field of automatic speech

recognition. In this field a method using hidden markov models [22] improved itself

in practice. The identification software used in the studies was developed in [13]. It

employs this method to identify single patterns in the sequences of LSI. It is used

again to identify the learner’s problem solving strategy considering sequences of

sequences of learner-system-interactions [13].

Empirical Methods. The shorthand notices of learners’ thinking aloud during the

problem solving process are transcribed employing methods of qualitative content

analysis as described in [18]. Hereby a single character was used to label each of the

occurring strategies (Tab. 2). For working out the similarity of two encoded

sequences of strategy patterns metrics in the field of symbol sequences are required.

The most obvious alternative would be using the hamming distance [9] for calculating

the “distance” of two strings. But in that case the gaps occurring sometimes while

recording (especially employing the “thinking aloud” method) could only be regarded

for the computation of the similarity by a complex data preparation. Therefore the

Automated Identification of Problem Solving Strategies – A Validation Study 7

Levenshtein Distance [21] was used for the comparison of the resulting strings. This

algorithm was slightly modified with the help of weighting factors as explained in

[15] to concern the higher similarity of the structured (A, B) and the not prestructured

(C, D) strategies among themselves. Using weighting factors is a successful method

in linguistics since a long time. For the analysis described here every matching pair of

characters appearing in the strings to compare is scored with 1.0, pairs of “similar”

characters (A and B, C and D) are scored with 0.5, other character combinations with

0.0.

Table 2. Coding of problem solving strategies.

Strategy Character

top down A

bottom up B

hill climbing C

trial and error D

2.3 Methodology

The shorthand notices mentioned above were transcribed in a table. Each column

represents in average a time slot of 28s. For every one of the four problem solving

strategies found in previous studies [12] detailed transcription rules were deduced

from publications in the field of problem solving and listed in tabular form for the

raters. Additionally hints such as those concerning the learners’ choice of words were

made available to them. The tables conclude a description of every strategy, some

example records and the rules, mentioned above. They were given to three raters. One

is a graduated computer scientist, the second a researcher in computer science

education and the last one a high school teacher (post-graduate psychologist). First of

all they transcribed only one of the 14 records. In a subsequent discussion

misunderstandings were avoided and points of disagreement were resolved based on

the transcription rules. After this, the remaining records were transcribed by each

rater.

Table 3. Correlation of Cohen’s [5]/ Fleiss’ κ [7] and agreement (based on [16]).

κ C / κ F agreement

� � 0.40 poor agreement

0.40 � � � 0.60 moderate agreement

0.60 � � � 0.75 substantial agreement

0.75 � � � 0.90 very good agreement

0.90 � � � 1.00 (almost) perfect agreement

8 Ulrich Kiesmüller and Torsten Brinda

Analysis. The interrater reliability was calculated based on Cohen’s κ (in case of two

raters) [5] in form of

������� ��������� – ����� ���������

������� ��������� . (1)

For computing the kappa label related to the measure of agreement as mentioned in

Section 2.2, the agreement of two random strings with n characters must be calculated

by

∑ ∑ ��
� � ���

! "·$%&'&(·)�*+.,·!-%&(
'./

%(./
�·∑ ∑ ��

� � ���
! "·$%&'&(%&(

'./
%(./

 . (2)

In this way you get a value of 0.375 for the random agreement. In case of more

than two raters Fleiss’ κ [7] related to the measure of agreement as mentioned above

was used. Kappa values were attributed to the measure of agreement based on the

ideas described in [16]. Tab. 3 shows this attribution. For every transcribed record the

measure of agreement was calculated. In Tab. 4 is shown an example of the resulting

strings. Calculating Fleiss’ κ for this record results a value of F = 0.846. In the same

way the agreement of raters’ results and the string, which results of the identification

software mentioned in Section 1.2, was calculated.

Table 4. Strings resulting from transcription of one “thinking aloud” record.

rater transcribed string

1 BBBBBBCCCCDDDDDDDCCCCCCCDDD

DCCCCCCCCCCCCCCCDCDDCCCCC

2 BBBBBBBCCCCCDDDDDDCCCCCCDDD

DCCCCCCCCCCCCCCCDCCCCCCCC

3 BBBBBBBBCCCCDDDDDDCCCCCDDDD

DCCCCCCCCCCCCDDDDDDDDCCCC

3 Results

3.1 Encoding and Interrater Reliability

An important point arose at the discussion between the raters before encoding. Not

every single statement indicating a special strategy may lead to the identification of

this strategy. For strategy records, such as the top down strategy, LSI sequences result

in quite long LSI sequences. A single statement not matching to the strategy is not

automatically a sign for changing a strategy. In fact it must be interpreted as not strict

maintenance of a certain strategy in the sense of [10]. While comparing the strings

resulting from the transcription of a “thinking aloud” record (Tab. 4) is noticeable,

Automated Identification of Problem Solving Strategies – A Validation Study 9

that all strings start with a number of B followed by alternating groups of C and D.

Only the lengths of the groups are slightly differing from one rater to the others. The

result of the interrater reliability (Fleiss’ κ) calculated employing algorithms and

methods mentioned above over all records was 0.816. This implies a very good

agreement of the raters resulting encoded strings.

Table 5. Result from identification software.

BBBBBBCCCCCDDDDDDDCCCCCDDDD

DDDDDCCCCCCCCCCDDDDDDDDD

3.2 Comparison and Results

The string resulting from the outcome of the identification software described in

[13] for the sample mentioned above is shown in Tab. 5. Already at a first glance

there is a high similarity to the strings encoded by the raters. There is also a group of

B at the beginning of the string, followed by alternating groups of C and D.

For every rater Cohen’s κ was calculated as measure of agreement (Tab. 6). The

average of 0.747 implies an agreement, which is substantial, nearly very good.

Table 6. Cohen’s κ for comparison of rater’s coding and software results.

rater Cohen‘s κ

1 0.746

2 0.714

3 0.780

average 0.747

4 Discussion

With a closer review of the encoded records of the raters and the software it is

evident, that there are more difficulties and lower agreement in parts of the records

with frequent strategy changes. By the help of the learners’ statements the human

rater is enabled to predict the strategy the learner will show next. As opposed to this

the software has to get some information in terms of LSI to compute the strategy,

which the learner has been using. So the strategy change in raters’ strings often

appears one or two steps before they occur in the string resulting from the

identification software. Consequently a perfect agreement of raters and software

results cannot be expected. After encoding the raters reported that the encoding rules

are overlapping in some parts. This lead to disagreement at these points of the

records. Both aspects may indicate the existence of further strategies not taken into

account so far. This will be examined in further studies as mentioned in Section 6. For

10 Ulrich Kiesmüller and Torsten Brinda

the results of the studies, described in this article, this issue means lower agreement

results, too. To ensure that the reproduction of your illustrations is of a reasonable

quality, we advise against the use of shading. The contrast should be as pronounced as

possible.

5 Conclusions

The answer to the second question asked in Section 2.1 is the high agreement (κ =

0.747) between raters encoding records of the “thinking aloud” method and the results

of the identification software. The methods employed by the software in its current

version, are already valid with reasonable certainty. Consequently the software

provides a possibility to identify automatically learners’ problem solving strategies

during solving problems using programming environments.

6 Outlook

For a further validation whether the four strategies and their respective patterns of

LSI mentioned above are selective and sufficient there will be a field study conducted

with a larger sample of learners. Employing statistical methods like multiple

regression analysis and explained variance, will answer the questions, whether the

four patterns are selective and whether there exist additional patterns. In this case

respective hidden markov models must be developed and added to the identification

software. The pattern recognition algorithms will be the same. Only the models have

to be trained one time, like described in [13]. In this way an adaption for a more

differentiated strategy identification is easily possible.

The results of the software developed can be used in different ways. One is for

studying the learners’ preferred problem solving strategies at the beginning of

teaching algorithm. Based on this, curricula in computer science can be improved,

regarding to the requirements for certain age groups. Additionally a more detailed

knowledge about the learners’ (preferred) problem solving strategies, will provide

teachers’ selective interventions in treating novice programmers. Another benefit is to

generate system feedback adapted to the learners’ problem solving strategy by using

the results of the software developed. In this way the entire teaching and learning

process can be improved. Guiding learners to an independent problem solving will be

supported to a greater extent than before. Consequently there is more time for

teachers to help learners at other crucial points on their way to a solution. At this term

it is not to design “learning without teachers” (like programmed learning). In fact,

teachers should be provided by enhanced programming environments and therefore

more time will remain for intensive advising on questions for example about

structuring of problem solving using algorithm control structures (sequence, branch,

iteration). Learners should neither be forced by the adapted feedback to change their

strategy to a special other one (because it might be better for solving the set task) nor

be forced to maintain their strategy over the entire problem solving process. They

have the free choice, which problem solving strategy they will use and are provided

Automated Identification of Problem Solving Strategies – A Validation Study 11

with each strategy. Another reason for employing the methods of identifying learners

problem solving strategies is the knowledge explained in [8], which reminds that the

teaching style should be addicted to the learning style for reaching the most effective

learning progress. In this connection an enhancement of the software components,

which were designed and developed until now, would be helpful. During learners

solving the set tasks, teachers get a statistical evaluation regarding to preferred

problem solving strategies out of the enhanced identification software. In this way

teachers would be enabled to adapt their teaching style to the learning style in further

lessons.

References

1. Ajzen, I., Fishbein, M.: Belief, attitude, intention, and behavior: An introduction

to theory and research. Addison-Wesley, Reading, MA (1975)

2. Ben-Ari, M.: Constructivism in computer science education. SIGCSE Bulletin,

30(1):257--261 (1998)

3. Chi, M. T. H.: Quantifying Qualitative Analyses of Verbal Data: A Practical

Guide. The Journal of the Learning Sciences, 6(3):271--315 (1997)

4. Chi, M. T. H., Glaser, R.: Problem solving ability. In: Sternberg, R. J. (ed.),

Human abilities: An information-processing approach, pp. 227--257, Freeman

(1985)

5. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and

Psychological Measurement, 20(1):37–46 (1960)

6. Conway, M. J. Alice: Interactive 3D Scripting for Novices. PhD thesis, University

of Virginia, Charlottesville, VA (1998)

7. Fleiss, J. L.: Measuring nominal scale agreement among many raters.

Psychological Bulletin, 76(5):378--382 (1971)

8. Felder, R. M., Spurlin, J. E.: Applications, Reliability and Validity of the Index of

Learning Styles. Engineering Education 21(1): 103--112 (2005)

9. Hamming, R. W.: Error detecting and error correcting codes. Bell System

Technical Journal, 29(2):147--160 (1950)

10. Hoc, J.-M.: Psychology of programming. Computers and people series. Academic,

London (1990)

11. Hundhausen, C. D., Brown, J. L., Farley, S. and Skarpas, D.: A Methodology for

Analyzing the Temporal Evolution of Novice Programs Based on Semantic

Components. In ICER, editor, ICER ’06: Proceedings of the second international

workshop on Computing education research, pp. 59--71. New York, NY, USA :

ACM (2006)

12. Kiesmüller, U.: Diagnosing Learners’ Problem Solving Strategies Using Learning

Environments with Algorithmic Problems in Secondary Education. ACM

Transactions on Computing Education, Vol. 9, No. 3, Article 17, 1--26 (2009)

13. Kiesmüller, U., Sossalla, S., Brinda, T., Riedhammer, K.: Online Identification of

Learner Problem Solving Strategies Using Pattern Recognition Methods. In: Proc.

12 Ulrich Kiesmüller and Torsten Brinda

ACM SIGCSE Annual Conference on Innovation and Technology in Computer

Science Education (ITiCSE), pp. 274--278. New York, NY, USA : ACM (2010)

14. Koenemann, J., Robertson, S. P.: Expert problem solving strategies for program

comprehension. In Robertson, S. P., Olson, G. M. and Olson, J. S. (eds.), CHI ’91:

Proceedings of the SIGCHI conference on Human factors in computing systems:

CHI Conference proceedings: Reaching through technology; 27 apr - 2 may 1991,

pp. 125--130. New York, NY, USA : ACM (1991)

15. Kondrak, G.: Phonetic alignment and similarity. Computers and the Humanities,

37:273--291 (2003)

16. Landis, J. R., Koch, G. G.: The measurement of observer agreement for

categorical data. Biometrics, 33(1):159--174 (1977)

17. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B. and Resnick, M.:

Scratch: A Sneak Preview. In: Proc. IEEE Int’l Conference on Creating,

Connecting and Collaborating through Computing (C5), pp 104—109. IEEE

Press, New York (2004)

18. Mayring, P.: Qualitative content analysis. In: Flick, U., v. Kardorff, E. and

Steinke, I. (eds.): A companion to qualitative research, pp. 266--269. SAGE,

London (2008)

19. Newell, A. and Simon, H. A.: Human problem solving. Prentice-Hall, Englewood

Cliffs, N.J. (1972)

20. Reichert, R.: Theory of computation as a vehicle for teaching fundamental

concepts of computer science. PhD thesis, ETH Zürich (2003)

21. Sankoff, D. and Kruskal, J.: Time warps, string edits, and macromolecules: the

theory and practice of sequence comparison. The David Hume series. CSLI,

Stanford, Calif., reissued edition (2001)

22. Schukat-Talamazzini, E. G.: Automatische Spracherkennung: Grundlagen,

statistische Modelle und effiziente Algorithmen. Vieweg & Sohn, Braunschweig

(1995)

23. Sullivan, F. R. and Lin X.: The ideal science student and problem solving. In:

ICLS, editor, ICLS ’06: Proceedings of the 7th international conference on

Learning sciences, pp. 737--743. International Society of the Learning Sciences

(2006)

Logic programming in informatics secondary education

Barbara Linck and Sigrid Schubert

University of Siegen, Didactics of Informatics and E-Learning
Hoelderlinstr. 3, D-57076 Siegen, Germany
{firstname.name}@uni-siegen.de

Abstract. This article presents a structure model of competence (SMC) as a re-
sult of research on logic programming. The SMC was theoretically derived
from didactic concepts and from empirically proofed learning and teaching ex-
periences. The aim of our research is to improve informatics secondary educa-
tion. The SMC shows how valuable the logic programming paradigm is as se-
cond and alternative programming paradigm in the curricula. Four dimensions
of competencies were discussed to cluster all relevant cognitive and non-
cognitive competence details in a tree structure. Each leaf of the SMC tree will
be a later test item. So the SMC is the scientific basis of our further research of
measurement of the competence development in secondary schools, which are
related to the logic programming paradigm.

Keywords: Competence Model Research, Logic Programming, Informatics in
Secondary Education, Active Learning, Didactics of Informatics

1 Motivation

The Association for Computing Machinery (ACM) curriculum „should seek to identi-
fy the fundamental skills and knowledge that all computing students must possess.“ [1,
p. 13] The authors of the curriculum were convinced that students need to learn more
than one programming concept: “It is also important for students to recognize that the
choice of programming paradigm can significantly influence the way one thinks about
problems and expresses solutions of these problems. To this end, we believe that all
students must learn to program in more than one paradigm” [1, p. 19]. Object-
oriented, functional and scripting languages are mentioned. However, the ACM cur-
riculum does not mention logic programming.

This was the motivation for our research project called ‘Competence modelling
and measurement of logic programming in informatics secondary education’ with the
aim to improve the informatics education with the focus on 12th grade students at
secondary schools. Both authors of this article have intensive teaching experiences in
this field. Logic programming was the second and alternative programming paradigm
of our students in secondary education. The research methodology starts with the
following two phases, which are presented in this article in chapters three and four:
1. National and international curricula e.g. [1], [2], [3], learning and teaching con-

cepts, examples of best practice, and learning obstacles in the field of logic pro-
gramming are analysed and discussed.

2. The identified competencies are clustered in a structure model of competencies
(SMC) of logic programming. This leads to a tree structure with the root “compe-
tencies in logic programming as second and alternative programming paradigm”.
This tree structure is divided into branches of competence dimensions with com-
petence sub dimensions until a leaf is reached. The SMC is theoretically derived
and has to be empirically proven.

High quality of the SMC allows successful measurement of the learning outcomes.

2 Applications of logic programming

Several criteria are important for the learning process of logic programming. Five
criteria are that students are motivated to learn, that prior knowledge is considered,
that there is a classification of tasks and their possible answers, that there is a measur-
ing of competencies, and that students gain a comprehensive view of the subject.
Therefore, the article starts with examples about applications of logic programming
outside of the school environment, which may motivate students in the learning pro-
cess. Such examples further show the importance of logic programming to be includ-
ed as an alternative programming concept in school curricula.

ʻCleverbotʼ is a chat system. It answers questions and furthermore, it can ask ques-
tions (see Appendix). It was developed by Rollo Carpenter who received several
prices for his researches. Cleverbot is special, because it extends its knowledge base,
while chatting with people (see figure 1, [4]).

RoboCup is a competition, in which AI strategies
are used to play soccer with a robot. It can be used
to motivate students to learn logic programming as
well. In addition, RoboCupJunior is a competition
developed for schools. To ensure that boys and
girls are equally motivated to participate, the cup
is divided into the three leagues Dance, Rescue
and Soccer. A European Cup and a World Cup are
organized to advance the exchange of creative
ideas. Logic strategies can be also used in other
games (see [5]).

Furthermore, AI strategies are also present in the current media. ʻWatsonʼ, a
computer programme developed by IBM, won against two players at the famous TV
show Jeopardy in 2011. It formulated questions to the given answers (see [6]). Its
ancestor beat Garri Kaparow in a chess game in 1997.

Another motivation for students to learn logic programming are logic games. There
are several puzzles available which are fascinating and which can be solved, e.g. with
Prolog. In this respect Tate comments: “Prolog. Yes, I know it’s old, but it is also
extremely powerful. Solving a Sudoku in Prolog was an eye-opening experience for
me. I’ve worked hard to solve some difficult problems in Java or C that would have
been effortless in Prolog” [7, pp. 3-4]. Logic puzzles can support different competen-
cies. Students train their logical thinking by solving these puzzles without
programming, they can test and analyse their own solution with logic programming,

Fig. 1. Chat system ‘Cleverbot’

and logic programming can be used to find a solution. With respect to the latter, a
comparison between the implementation using different programming paradigm is
advisable.

Another application of logic programming is a robot scientist called ʻAdamʼ. It
analysed genes and enzyms in collaborations with logic programming. It was able to
formulate and test 20 hypotheses autonomously. As a result, twelve novel hypotheses
could be confirmed (see [8]). Such robot scientists can be used in school to exemplify
the examination of phenomena in everyday life with logic programming. Further-
more, interdisciplinary teaching, such as a combination of biology and informatics, is
possible. It could also be discussed, how informatics and logic programming can help
to improve our living standards. E.g. these automatic robots may be applied to
discover new development in medical investigations.

As a conclusion, there are several examples, which can illustrate the useful applica-
tion of logic programming beyond the school context and can motivate students to
learn logic programming.

3 Learning and teaching experiences

The research process to cluster the competencies started with the analysis of teaching
experiences in higher education because there are many very detailed reports availa-
ble. Due to the fact that first semester students of higher education are only one year
ahead of learners in grade 12 of upper secondary education, it can be assumed that the
learning obstacles are similar. All didactic recommendations of higher education
however, need to be modified for the target group of secondary students.

Higher education
Logic programming and in particular, learning obstacles to logic programming have
been discussed in several studies. Taylor and du Boulay [9] analysed very detailed
why learning logic programming was difficult for novices:
− “So at first sight Prolog looks as though it should be fairly easy to learn. However,

the language’s apparent simplicity is beguiling, beginners occasionally being lulled
into a false sense of security” [9, p. 157].

− Another main problem is ‘Interpreting problem descriptions’, which demands
competencies in ‘Entities and relations’ (I) and also in ‘Generality of solution’ (II):

I. “But this very flexibility may be a trap, because the minimal amount of structure
is imposed on the knowledge bases” [9, p. 161].

II. “A widespread problem that beginners face when interpreting problem descrip-
tions is deciding how general a solution should be” [9, p. 162].

− “The crux of the argument is this: although most adults are capable of formal rea-
soning, the suggestion that such reasoning either conforms to, or is captured in, the
precise rules of predicate logic is unwarranted” [9, p. 164].

The above study highlighted the main obstacles of logic programming to be overcome
by beginners. The structure of the knowledge base and the representation of a prob-
lem description in facts and rules are often very difficult for them. Even though our

target group are learners with prior knowledge of programming, these difficulties may
also be experienced by them.

Another obstacle was highlighted by Tate in an interview [7]: “I recall one of my
first experiments with Prolog, writing something along the lines of x = x + 1. Prolog
responded no. Languages don’t just say no. They might give the wrong answer or fail
to compile, but I had never had a language talk back to me. So, I called Prolog sup-
port and said that the language had said “no” when I tried to change the value of a
variable. They asked me, why would you want to change the value of a variable? I
mean, what kind of language won’t let you change the value of a variable? Once you
grok Prolog, you understand that variables either have particular values or are un-
bound, but it was unsettling at the time” [7, p. 92]. This example was very authentic
and gave us a first glance of the main problem ‘logical variables’. In particular, the
prior knowledge about variables has an influence on the learning of logic program-
ming.

In another study Stamatis and Kefalas [10] created a ‘Logic programming didactics
(LPD)’ and evaluated their recommendations empirically. The target group consisted
of learners with prior knowledge of imperative programming. LPD is based on a so-
called student model. A student model is an assumption of seven classes of specific,
cognitive misconceptions, which every learner has to overcome in the learning pro-
cess of logic programming, e.g. “all parameters of functions/methods should have a
value when called” [10, p. 137]. LPD continues exercise classes with solutions, which
support to learn from misconceptions mostly through a comparison of imperative
solutions and Prolog solutions. This LPD is very useful in teacher education because
it improves the awareness of a teacher to recognise typical misconceptions of the
learners in upper secondary education and how to guide the learner by his or her
transformation from such a well-known misconception into a successful conception.

Secondary education
Several studies on logic programming are also available that focus on students at
school level. For example Di Bitonto, Roselli and Rossano [11] developed software as
a learning tool for novices of informatics and of logic programming, aged 9-13 years,
and evaluated the usability of the software. 23 pupils learned with the software for
two weeks. Afterwards they were tested in building facts (1), reading facts (2), build-
ing rules (3), explaining the virtual Prolog machine (4) and problem solving with
Prolog (5). Surprisingly task (4) was solved by 20 pupils and task (5) by 17 pupils,
even though only 14 pupils could solve task (1) (12 pupils could solve (2) and 11
pupils task (3)). This implies that some pupils could write a Prolog program, but were
not able to write the components of such a program (facts and rules). However, it was
emphasized that learning tools are highly important for the learning process. In our
opinion a learning tool can support in particular the understanding of the virtual ma-
chine and the tracing. Therefore, the use of such tools does have an influence on com-
petencies of logic programming.

In another study Scherz and Haberman [12] prepared Prolog rules of abstract data
types (ADTs), e.g. lists, sets, trees, graphs, which the learners used as black boxes.
Therefore, they recommend: “[...] instructional model is centred on using ADTs [...]”
[12, p. 332]. They also recommend logic programming as second and alternative
paradigm, but they only focussed on novices of informatics and of logic programming

from the age of 14 years. The learners were in this study divided in two groups. The
first group used the prepared Prolog rules of ADTs in there solutions. The second
group was able to implement the Prolog rules of ADTs by themselves. Both groups
could successfully solve their project work at the end of the yearlong introductory
course. Two didactic questions are left open in the study:
− Firstly, it is uncertain when learners should switch from one group to the other to

develop their competencies in abstraction and formalization.
− Secondly, it is assumed that learners face obstacles in understanding list as a re-

cursive data type in Prolog if they used the prepared Prolog rules of the ADT list.
Even though no answers were given to these questions, the prepared Prolog rules of
an ADT may in our view be used as a first learning step. They enable the students to
apply and to comprehend e.g. the data structure list, before the students have to devel-
op their own application of an ADT.

In many of the sixteen states of Germany logic programming is the second and al-
ternative paradigm in informatics curriculum of upper secondary education. We focus
on Roehner [13], because this book is considered to be a masterpiece of didactics of
informatics. He published in Hesse 1995, 2002 and 2007 three versions of exercise
classes and solutions of logic programming together with teaching recommendations.

In the beginning of the course logic programming seems in general to be very easy.
But by designing rules with the recursive predicates of the data structure list, this is
changing. The learners face intense obstacles, because their experience with the first
and familiar kind of informatics modelling and programming is no longer applicable.
It is the task of the teacher to support the overcoming of frustration by the learning
group, which is often a result of the missing statements of loops and conditional
branching and the new kind of binding of logical variables. “Goals can be generalized
by the use of Prolog variables. They do not behave like the variables in other lan-
guages, and are better called logical variables. The logical variables replace one or
more of the arguments in the goal” [14]. Logic programming is to use without graphic
user interface. Therefore, the preparation of the course has to consider motivational
aspects even more. One possibility is the pizza-task [13, p. 14], a simple task of im-
plementing facts and rules as well as performing simple queries to use the data of a
pizza place. This pizza-theme can be also expanded to explain and-relations, or-
relations, calculations, entities, trace modus and box model.

The functionality of the virtual machine should be visualized to facilitate the learn-
ing process. One opportunity to do so is the box model and the trace modus. Another
important point is to consider the prior knowledge of the learner. In the most cases the
imperative programming paradigm is learned before the logic programming. There-
fore, Roehner implies to use the imperative prior knowledge to introduce the list pro-
gramming. The differences, e.g. lists can contain different data structures and need no
pointers, should be elaborated. It is also important to exemplify that the structure
[element 1, element 2, …, element n] cannot model the dynamic of the data structure
list. Therefore, the virtual machine works intern with another description. A list can
be also seen as a head element and the rest of the list. The description is [head | tail].
Like a term, a list is intern a tree structure. This should also be illustrated to the learn-
ers. Afterwards they will work much easier with lists than before in the imperative
programming because of the lack of pointers [13, pp. 22-24].

Learning potentials
Logic programming gives the learner a new approach to well-known and less well-
known fundamental informatics ideas (see [7], [9], [10], [11], [12], and [13]). The
learning potentials could be sorted into three groups:
(1) Knowledge extension through a special kind of high-level language:
− design of knowledge bases with sensibly knowledge representation:

• application of closed-world-assumption,
• design of facts and rules with recursion,
• design of data structures list and tree with recursion,
• recognition of circularities,

− application of declarative and procedural semantics within one language,
− application of cut operator as methodology to make programs efficient,
(2) Knowledge extension through a special kind of human computer interaction:
− application of a query language,
− application of trace modus to debug faulty programs,
(3) Knowledge extension through a special kind of virtual machine, the Prolog ma-
chine:
− application of automated reasoning through unification and depth-first search with

backtracking mechanism,
− interpretation and evaluation of internal states of the virtual machine.
Furthermore grammar and formal languages, vending machines, Turing machine and
automatic language processing could be part of the more advanced teaching units (see
[13]).

Recommendations
The learning and teaching experiences show how logic programming expands the
competencies of programming. The imperative programming and the logic program-
ming should be compared. Learners need to explicitly understand the following:
1. There are different classes of problems, which will be solved with a different

kind of thinking (a different kind of programming paradigm).
2. The data structures are not the same. With this reflection the understanding of

data structures will increase.
3. Imperative programming includes iteration and recursion, but logic programming

applies recursion. Some students may wonder why they learn recursions if they
can express the same in iterations. When they start to learn Prolog, they will be
motivated to learn them.

4. Those variables play key roles in different concepts. The associated discussion
about it will support the understanding of the underling mechanism.

The learners should be able to express the differences. This means that they have to
review and to evaluate both paradigms in a new context.

4 Modelling of competencies of logic programming

Our aim is to measure the learning results. Therefore, we focus on modelling of com-
petencies as basis of test items. Two kinds of competence models are required: struc-
ture models of competence (SMC) and models for levels of competence (MLC). The
SMC contains the competencies, which are required to solve problems of specific
domains. E.g. students are supposed to create a knowledge base referring to a given
problem. Furthermore, MLC contains a differentiation into levels. E.g. at the begin-
ning of the course students are supposed to add new facts and rules, which are similar
to given facts and rules. A different level would be that students are supposed to for-
mulate own facts and rules in a following lesson. The taxonomy of Anderson and
Krathwohl will be used to separate competencies into different levels of the cognitive
process [15, pp. 67-68]. This article will focus on the SMC as a first research result.

As a conclusion of learning and teaching experiences (see [7], [9], [10], [11], [12],
and [13]) and an additional analysis of German school curricula (see [16]) all detected
competencies were clustered. But the decision about the main components of the
SMC is very difficult. More than one option is justifiable. We used the research re-
sults of [17], which gave us a lot of inspiration and concrete advice for the structuring
of our competence model, e.g. C2 Basic competencies and C3 Informatics views.
“Each dimension comprises different competency components, which characterize in
more detail the requirements within the two mentioned informatics domains” [17, p.
514]. The domain is now logic programming. According to Weinert´s notion of com-
petency [18], competencies encompass both cognitive and non-cognitive skills and
abilities. This leads us to the component C4 Non-cognitive competencies. The first
component C1 Prior knowledge is a speciality of the target group, which should be
learners with explicit prior knowledge in two fields, predicate logic and a first pro-
gramming paradigm. As result of this collection the SMC has four competence di-
mensions (C1-C4) with sub dimensions (see figure 2).

C1 Prior knowledge
Prior knowledge needs to be considered in every lesson. E.g. predicate logic can be
taught in mathematics. This prior knowledge is not obligatory in all school curricula.
Hence, it can vary. It is necessary to determine whether this knowledge should be
repeated or included into the teaching unit of logic programming.

As mentioned before, this structure model assumes that the target group learned
another programming paradigm beforehand, because all reviewed school curricula
included logic programming as a second or third concept. Imperative or object-
oriented programming is included in the curricula first. Researches and experiences in
school and at university level showed that known programming paradigms, especially
the imperative concept, have a remarkable influence on the learning of logic pro-
gramming (see [10], [13], and [19]). Hence, the first paradigm has to be considered as
prior knowledge. One should bear in mind, that if such prior knowledge has not yet
been gained, the competence C2.1 Computer programming in general would need to
be discussed in a very different way.

Fig. 2. Structure model of competencies of logic programming

C2 Basic competencies
There are two main basic competencies regarding logic programming. Students are
supposed to learn C2.1 Programming competencies related to any paradigm and C2.2
Logic programming. One example of C2.1 Programming competencies related to any
paradigm is the ability of interpreting problem descriptions. “This includes getting a
precise enough understanding of what the problem is in order to determine what
might count as a solution” [9, p. 158]. Another example of C2.1 is the mapping from
understanding of the problem to an understanding of the simplified informatics sys-
tem. “[...] at no point are we talking about the actual physical machine [...], but ideal-
ized mental models of part of the computer’s functioning” [9, p. 158].

C2.1 requires prior knowledge about at least one other programming paradigm. Be-
fore solving a given task with a programming language, students should reflect about
modelling of the task. The method of modelling differs from paradigm to paradigm.
But in every programming concept a reflection about the task and a specification (see

C1 Prior knowledge for logic programming
C1.1 Predicate logic
C1.2 First programming paradigm

C1.2.1 Imperative programming
C1.2.2 Object-oriented programming

C2 Basic competencies
C2.1 Programming competencies related to any paradigm
C2.2 Logic programming

C2.2.1 Application of logic programs
C2.2.2 Comprehension of logic programs
C2.2.3 Development of logic programs (including debugging)

C3 Informatics views
C3.1 Knowledge base

C3.1.1 Structure
C3.1.2 Closed-World-Assumption
C3.1.3 Dynamic modification

C3.2 Queries
C3.3 Tracing

C3.3.1 Unification and backtracking
C3.3.2 Trace modus
C3.3.3 Box model
C3.3.4 Parse tree

C4 Non-cognitive competencies
C4.1 Attitudes

 C4.1.2 Expectations for Informatics Literacy & Professional Practice
C4.2 Social-Communicative Skills

 C4.2.1 Cooperation & Teamwork
 C4.2.2 Empathy: Change of Perspectives & Roles (User, Developer)

C4.3 Motivational and Volitional Skills
 C4.3.1 Openness to new Ideas & new Requirements
 C4 3 2 i i i

http://www.dict.cc/englisch-deutsch/predicate.html
http://www.dict.cc/englisch-deutsch/logic.html

[12]) is necessary before the implementation can follow. The similarities of pro-
gramming paradigms should be discussed. Furthermore, C2.1 includes a comparison
between different programming concepts. E.g. control structures or variables should
be discussed, because their structures vary in different paradigms. Both parts of pro-
gramming competence do not support only the understanding of one paradigm but
also the understanding of programming itself.

In C2.2 Logic programming, the concept should not only be compared exclusively
to other paradigms. Furthermore, logic programming basics can be taught separately.
The logic programming concept should be applied, comprehended and developed by
students. E.g. students apply logic programming while performing queries to a given
knowledge base. Students comprehend world-close-assumption while analysing a
given answer. Moreover, students develop logic programs while formulating own
facts and rules referring to a given task.

C2.2 Logic programming has a strong connection with C3 Informatics views. The
different informatics views have to be applied to gain the basic competencies. There-
fore, these dimensions are related to each other. The SMC structures the competen-
cies. Although, C2.2 and C3 are connected, they describe different components of
competency and thus, are both clustered in separate dimensions.

C3 Informatics views
In logic programming there are three different kinds of views, namely C3.1
Knowledge base, C3.2 Queries and C3.3 Tracing. With respect to C3.1 Knowledge
base students are supposed to understand the internal structure of logic programming.
They apply, comprehend and develop facts and rules in a knowledge base. The C3.1.1
Structure of the knowledge base is a main theme. Furthermore, students are supposed
to understand the C3.1.2 Closed-World-Assumption in order to analyse the facts and
rules. C3.1.3 Dynamic modification of the knowledge base needs to be discussed, too.

With respect to C3.2 students are supposed to perform queries. Hence, they analyse
the external structure of logic programming. On the one hand, students formulate
queries to solve a given problem. On the other hand, they should be able to predict the
answer. C3.1.2 Closed-World-Assumption has a strong connection with this compe-
tence.

C3.3 Tracing combines the understanding of the internal and the external view.
Students are supposed to understand C3.3.1 Unification and backtracking, especially
intern and extern backtracking. C3.3.2 Trace modus, C3.3.3 Box model and C3.3.4
Parse tree can be used to illustrate and to explore the structures and to support the
competence C2.2.3 Development of logic programs (including debugging).

C4 Non-cognitive competencies
The non-cognitive competencies are applied from [16]. A separation of cognitive and
non-cognitive competencies in empirical researches allows reflecting on their correla-
tions [20, pp. 4-5]. Therefore, this research project starts with the measurement of the
cognitive competencies.

Summary
The presented first version of a SMC of logic programming is the basis for the devel-
opment of test items to measure the learning outcomes of students in informatics

secondary education. Our main research aim is to evaluate and to improve this educa-
tion. The improvement of this first version of a SMC is an intermediate research aim.
Further researches will focus on a first version of a model for levels of competence
(MLC) regarding logic programming.

5 Conclusions

Important criteria for a good learning process in informatics education, which were
mentioned in chapter two, are fulfilled with logic programming. E.g. applications of
logic programs can be used to motivate and to support a comprehensive view on in-
formatics. Because of the competence orientation the other criteria, classification of
tasks and measurement of competencies, should be based on a SMC. This article
presented a first proposal of a SMC to classify logic programming competencies
based on school curricula. This SMC needs evaluation through further empirical stud-
ies. Therefore, test items based on C1-C3 will be developed to measure the learning
outcomes of students at schools.

The work on the SMC showed us that there are different opportunities to structure
the competence dimensions and sub dimensions. Starting point for a further discus-
sion can be the strong connection between C3.1.2 Closed-World-Assumption and C3.2
Queries. Although closed-world-assumption occurs by formulating the knowledge
base, it might be more correlated to queries. A major point for discussion might be the
connection between C2.2 Logic programming and C3 Informatics views. The differ-
ent views are necessary to gain the basis competencies of logic programming. Despite
their relationship, both competencies should be tested separately. This might be a
difficult task. The application of the test items will show us if a separation is possible
and helpful or not. With further research results we will be able to review the first
version of a SMC of logic programming.

Another argument could be that unification and backtracking can be illustrated
with trace modus, box model and parse tree. Hence, unification and backtracking
might be seen as a superior level. On the one hand, it could replace C3.3 Tracing. On
the other hand, C3.3.2 could be changed to C3.3.1.1 and so on. In this respect, further
research on this is still required.

Furthermore, the use of media is essential for the success of the learning and teach-
ing process in logic programming. Learners need different learning aids for simula-
tion, animation and visualisation of structures of logic programs and of the special
kind of virtual machine, the Prolog machine. Therefore, there is a need for learning
tools to be reviewed on their didactics potential. This will show if there is a lack of
appropriate tools.

Our intention is the continuation of measurements, to explore the learning of logic
programming in detail, and to use this knowledge to improve the test items together
with the SMC and the MLC. The competence orientation in informatics education is
an encouraging development. With respect to competence orientation the SMC is one
important step for our research process.

References

1. ACM and IEEE (eds.): Computer Science Curriculum 2008, (2008),
 www.acm.org/education/curricula/ComputerScience2008.pdf

2. Tucker, A. (ed.): A Model Curriculum for K-12 Computer Science: Final Report of the
ACM K-12 Task Force Curriculum Committee. 2nd Edition. New York, ACM, (2006),
www.csta.acm.org

3. Tucker, A.: K-12 Computer Science: Aspirations, Realities, and Challenges. In: Hrom-
kovic, J., Královic, R., Vahrenhold, J. (eds.): Teaching fundamental concepts of informat-
ics. Proceedings of the 4th International Conference on Informatics in Secondary Schools -
Evolution and Perspectives (ISSEP), Springer, Berlin, pp. 22-34, (2010)

4. Cleverbot: www.cleverbot.com
5. RoboCup: www.robocup.org
6. National geographic Daily News: Watson Wins Jeopardy! Published February 17, 2011,

news.nationalgeographic.com/news/2011/02/pictures/110217-watson-win-jeopardy-ibm-
computer-humans-science-tech-artificial-intelligence-ai

7. Tate, B.A.: Seven languages in seven weeks: A pragmatic guide to learning programming
languages. The Pragmatic Bookshelf, Raleigh, (2010)

8. King, R.D. et al.: The Automation of Science. In: Science, vol. 324 no. 5923 pp. 85-89,
(2009), www.sciencemag.org/content/324/5923/85.full

9. Taylor, J., du Boulay, B.: Studying novice programmers: Why they may find learning
Prolog hard. In: Rutkowska, J., Crook, C. (eds.): Computers, Cognition and Development:
Issues for Psychology and Education, John Wiley, Chichester, pp.153-173, (1987)

10. Stamatis, D., Kefalas, P.: Logic programming didactics. In: Proceedings of the Informatics
Education Europe II Conference, pp. 136-144, (2007),
www.seerc.org/ieeii2007/PDFs/p136-144.pdf

11. Di Bitonto, P., Roselli, T., Rossano, V.: Formative Evaluation of a Didactic Software for
Acquiring Problem Solving Abilities Using Prolog. In: Paolini, P, Garzotto, F. (eds): Pro-
ceedings of the 8th International Conference on Interaction Design and Children, ACM,
New York, pp. 154-157, (2009), portal.acm.org/citation.cfm?id=1551815

12. Scherz, Z., Haberman, B.: Logic programming based curriculum for high school students:
The use of abstract data types. In: Laxer, C. et al. (eds.): Proceedings of the 26th SIGCSE
Technical Symposium on Computer Science Education, Tennessee, pp. 331-335, (1995),
portal.acm.org/citation.cfm?id=199848

13. Roehner, G.: Informatik mit Prolog. 3rd edn. Amt f. Lehrerbildung, Frankfurt, (2007)
14. Amzi! inc.: Adventure in Prolog. www.amzi.com/AdventureInProlog
15. Anderson, L., Krathwohl, D.: A Taxonomy for Learning, Teaching, and Assessing: A

Revision of Bloom‘s Taxonomy of Educational Objectives. Longman, New York, (2001)
16. Logic programming curricula: www.die.informatik.uni-siegen.de/logicprogramming
17. Magenheim, J., Nelles, W., Rhode, T., Schaper, N., Schubert, S., Stechert, P.: Competen-

cies for Informatics Systems and Modeling. In: Proceedings of the 1st Global Engineering
Education Conference - Educon 2010, IEEE Computer Society, pp. 513-521, (2010),
Digital Object Identifier: 10.1109/EDUCON.2010.5492535

18. Weinert, F.E.: Concept of Competence: A Conceptual Clarification. In: Rychen, D., Sal-
ganik, L. (eds.): Defining and Selecting Key Competencies. Seattle, (2001)

19. Kumar, A.N.: Prolog for imperative programmers. In: JCSC 17, 6, pp. 167-181, (2002)
20. Klieme, E., Leutner, D., Kenk, M. (eds.): Kompetenzmodellierung. (2010),

www.pedocs.de/volltexte/2010/3324/pdf/Beiheft56_komplett_D_A.pdf

Appendix: Conversation with Cleverbot

Rollo Carpenter, who received several prices for his researches, developed Cleverbot
(see [4]). A special version of Cleverbot won the Machine Intelligence Competition
2010 with average rating of 42.1% human (see www.bcs-
sgai.org/micomp2/index.html, http://www.cleverbot.com/machine). Cleverbot (Cb)
extends its knowledge bases, when people interact with it, e.g.:
- Hello!
- Cb: How are you?
- Fine.
- Cb: Good.
- How are you?
- Cb: Fine
- How is the weather?
- Cb: I do not know.
- Have a look out of the window.
- Cb: I can’t, I’m in mom’s basement.
- Oh, I’m sorry for you.
- Cb: Why are you sorry for me? I am glad you have sympathy, but there is no

reason for you to be sorry.
- You like to live in your mom’s basement?
- Cb: I have never left the country.
- Where would you like to travel to?
- Cb: I would like to travel to South America.
- Bye.
- Cb: Where are you going?
- Back to work.
- Cb: So you’re leaving?
- Yes
- Cb: Okay, Cya.

Social competencies appraisals in CSE and in a computer
science contest

Gabor MeiÇner

Friedrich Schiller University Jena, Ernst-Abbe-Platz 2
D-07743 Jena, Germany

gabor.meissner@uni-jena.de

Abstract. Jury members of a national computer science contest and teachers
use different ways to appraise social competencies. On the one hand social
aspects are more important for teachersô appraisals than for jury membersô
appraisals. On the other hand if a contest participant e.g. shows a bad behavior
the result could be not winning a price or an award without regarding other
aspects of the overall performance. Furthermore teachers show other criteria to
appraise social competencies.

Keywords: Social competencies, contest, teachers, appraisals

1 Why talk about social competencies?

The complexity of modern life confronts learners and individuals with new
challenging demands. The Definition and Selection of Key Competencies (DeSeCo)
Project defined three broad categories of such competencies: use tools interactively,
interact in heterogeneous groups and act autonomously [7]. This article focuses on
the second category, the interacting in heterogeneous groups from the perspective of
teachers of computer science education in contrast to the jury members of a computer
science contest [8].

Computer science is closely linked to social interaction in two different ways. To
develop informatics systems the developer has to comprehend different roles to
design these systems. Such systems should be used at different levels of experience,
can be modified by other developers and have to meet the conditions of the
contractor. The other perspective on social interaction in computer science is the need
to develop informatics systems in heterogeneous groups [4].

The objective of this article is to provide hypothesis to point out the differences
between appraisals of social competencies in computer science education and in a
computer science contest. In this study, a semi-structured interview with five jury
members and six teachers was used to get a general idea of social competencies
appraisals in computer science.

mailto:gabor.meissner@uni-jena.de

2 Gabor MeiÇner

In the second part of this article the different contexts will be pointed out. Later the
method will be presented and in the fourth part the results of the interview will be
discussed.

2 Context of the appraisals in CSE and in the contest

The curriculum of the interviewed teachers in the German federal state of Thuringia
provides a semiannual project phase in 12th grade in which students have to develop
computer programs with self-chosen objectives. Regulations demand to work in a
team (ñ[The students] have to organize and coordinate their work in project groupsò1
[11]).

The teachers have to measure different aspects of the studentôs achievements, e.g. the
topic selection, the implementation, the evaluation and the usability [11]. Mostly
social interaction of the group members will be measured. Each student gets an
individual feedback on his or her achievement.

On the other hand jury members measure the achievements of the participants of the
task-based Federal Contest in Computer Science (German: Bundeswettbewerb
Informatik, shortened: BWInf). The contest lasts one year and is open for youths up to
the age of 21. To get a price, an award and/ or an invitation to the International
Olympiad in Informatics (IOI) the participants have to solve problems in three rounds.
Price winners are entitled to the German National Academic Foundation. Because the
foundation requests social competencies on a high level it is an important reason for
observing social interactions between the group members.

The contest mainly addresses excellent secondary school students, but in the first
round a broad effect is also intended [10]. Group work is allowed in this first (and
third) round. The second round demands much more skills and knowledge in variable
fields of computer science. Both rounds have to be done as homework. The most
problems can be solved by (delivering the source code of) self-written computer
programs including documentation; but also other types of tasks are possible [6].

The best 30 participants of the second round will be invited to a third symposium-like
final round which last four days. On the second and third day the participants take
part in a 30 minute specialist discussion and a six-hour task-based group work, mostly
with three other participants. As proposed by Cormack et.al. [2] informatics-
orientated collaboration is an essential part of the third round. The group work is
observed by two associated jury members. The goal of this phase is to solve some
(hard) problems without additional aids, especially without computers. Afterwards the
group has to present their results and put them up for discussion. This article focuses
on the juryôs appraisal of the group work.

1 All translations (German ï English) were made by the author.

Fehler! Verwenden Sie die Registerkarte 'Start', um title dem Text zuzuweisen, der hier
angezeigt werden soll. 3

To compare the appraisals of the jury members and teachers it is necessary to point
out some differences caused by different frameworks and guidelines. Teachers have
to make their decisions by themselves; the appraisals of the jury are a result of a
social negotiation process of about 15 jury members. The juryôs discussion bases on a
numerical score for a participant. A jury member who observed a group gives a score
to every group member and a jury member who held an interview gives a score to the
interviewed participant. The appraisals are not determinate by a strict guideline [9].
Nevertheless this process will not be investigated, because descriptions of jury
sessions could not be done by regarding privacy standards. Also the group work phase
during the contest is much shorter and could be observed all the time. In school
context students could also do their work at home. In the classroom the teacher cannot
observe all groups at the same time. From the perspective of the teacher there is a lack
of information which can be compensated by knowing the student over a longer
period or using self-evaluation methods. Therefore the expressed views of the
teachers and the jury members will be treated equally in this article.

The DeSeCo Project group defined three social competencies which are important for
both kinds of group work [6]:

Ƅ the ability to relate well to others,
Ƅ the ability to cooperate and
Ƅ the ability to manage and resolve conflicts.

For such projects, as the mentioned school project, long-term objectives have to be set
in a negotiation process. It is important to present, understand and discuss ideas and to
make decisions (second competency). Furthermore it is important to make sure that
inter-personal conflicts do not have a negative impact on the objectives; the students
have to deal with such conflicts (first and third competencies). The group work during
the contest also requires such competencies. In contrast to the school project long-
term organization is not needed. But because of the cooperation with unknown (and
not self-chosen) group members abilities to relate well to others could be more
important, e.g. empathy or effective management of emotions. In both scenarios
competencies to bridge the gap between different levels of subject-related knowledge
and skills are needed to ensure the project objectives [4].

3 Method

The interviews were divided into two parts: On the one hand, the objective was to
find out how teachers and jury members measure subject related achievements. On
the other hand, the interviewed should explain how to appraise social competencies.
Only the answers of the second part will be evaluated in this article.

In November 2010 two pre-test interviews took place. The results of the pre-test
interview were only used to edit the questionnaire. Between December 2010 and
February 2011 eleven semi-structured interviews were held. The interviews were
conducted by phone and were recorded. For the evaluation of the transcribed

4 Gabor MeiÇner

interviews the qualitative content analysis by Mayring [5] was used. Two experts
rated the qualitative data of the transcribed interviews2. Both experts currently work at
the University of Jena and research in CSE. In order to increase the inter-rater
reliability a list of categories and anchors were added. The author developed
categorized statements and anchors to five different topics.

3.1 Sampling

To ensure that the most aspects of the research question can be identified a statistical
sampling was chosen. The sample

Ƅ includes the groups of jury members and teachers,
Ƅ only includes jury members or teachers who are experienced in appraising

students or contest participants and
Ƅ has a similar distribution of gender, age, qualification and experience as the

population.

The sample considers of six teachers and five jury members of the third contest round.
The participated teachers live and work in the German federal state of Thuringia.
They are aged between 41 and 55 years (. . 3 female and 3 male).
The jury members are aged between 36 and 52 years (. . . Four jury
members work as Professors (all male) and one female jury member work as a
research associate. All jurors research in Theoretical Computer Science. Because of
the focus on social competencies the main research topic could be a confounding
variable, because of the fact that social interacting in different areas of computer
science could have a different importance. As well as in the sample the most jury
member research in Theoretical Computer Science. So only a small impact of this
variable could be expected.

The interviewed teachers and jury members have a lot of experience in appraising
students or contest participants. This might be a confounding variable, but it was
necessary to ensure that the interviewed teachers and jury members can be assumed as
experts. In this article, experts are defined by their appraisals experience and their
subject-related knowledge (qualification) [3]. Both conditions are met.

3.2 Analysis Method

As mentioned the qualitative content analysis by Mayring was chosen for analyzing
the statements (see table 1). Categories were found inductively because of missing
researches and theories in this field and because of the implication of the analysis
method. Quantitative results are not important in this study. On the other hand the
objective was to find characteristics of the different groups.

2 For all categories, the inter-rater reliability was higher than 0.7 (Cohen-Kappa ə .

Fehler! Verwenden Sie die Registerkarte 'Start', um title dem Text zuzuweisen, der hier
angezeigt werden soll. 5

Table 1. Simplified steps and operations of the analysis method

Step Operation Comments
1 Selection of mat-

erial
Parts of interviews of 6 teachers and 5 jury members.

2 Summarize The answers of the interviewed were reduced step by
step to a similar annotation. Developing of questions.

3 Explication Using material to clarify open questions (e.g. guidelines).
5 Inductive

development of
categories

Developing of categories, anchors and coding rules (see
chapter 3.3).

6 Ensuring of the
inter-rater
reliability

Two raters evaluated the categories according to the
material (Redefinition of the categories, anchors and
coding rules).

7 Interpretation

The following questions were posed to the material:

1. How do social skills or the ability to cooperate impact your appraisal?
2. How important are social skills for your appraisal?
3. Why are social skills important for the contest/ the computer science education?
4. What is more important: Having a good idea or the implementation of the solution?
5. Which criteria do you apply when appraising social skills?

In several steps categories, anchors, descriptions and instructions for coding were
developed. In this study it will be differentiated between social and non-social aspects
of the appraisals. Social aspect will be investigated; but non-social aspects must be
treated as a black box.

3.3 Category systems

The first question focuses on the structure of the appraisal model. With the help of
this question the interaction between these two aspects should be illustrated. Thereby
two different types of structure are possible: If a test person says that social aspects
are part of the overall performance and have a specific weight, the impact will be
called ñadditionalò. In contrast to that if a student or contestant misbehaves so that
other aspects of the performance get unimportant and the overall performance get
poor, the impact will be called ñmultiplicativeò (see table 2)3. Propositions of a
specific weight of social aspects (in contrast to the weight of non-social aspects) could
not be done with the help of question 1.

3 In this article the term ñmultiplicativeò bases on the productivity model by Walberg [12]. The
term ñadditiveò was often used to describe other model types [1].

6 Gabor MeiÇner

Table 2. How do social skills or the ability to cooperate impact your appraisal?

Code Category Anchor
A Additive ñI do appraise the product and, with one or two points4, the

cooperation of the group members.ò
B Multiplicative ñGroup work depends on something like social

competencies. Many participants who performed well in
the interview disqualified themselves because they
misbehave during group work.ò

If a test person gives several answers and it is possible to assign them in both
categories, than mostly the overall answer to question 1 must be ñmultiplicativeò,
because the impact of a multiplicative structure has a higher weight. The answers to
the second question express the weight or the importance of social competencies in
the overall performance. Three categories similar to Likert scales were found
(important, moderately important and of little importance). Only one category per test
person can be assigned. If answers of a test person can be assigned to different
categories a specific category has to be chosen by the help of the context (see table 3).

Table 3. How important are social skills for your appraisal?

Code Category Anchor
A Important ñI think it is very important. I think it is indispensable.ò
B Moderately

important
ñThatôs good, but it has little to do with computer science.
I would appraise this, but not overvalued in this conte t.ò

C Of little
importance

ñIn real life, in the real society it could be important to
have some social skills. Nevertheless in the contest I
would appraise it only very low.ò

With the help of the answers to the third question the reasons of the importance could
be pointed out. The statements were assigned to four categories. The first category,
guidelines, sums all answers which mention guidelines. In school context this could
be the curriculum or internal school programs. The contest has to ensure that the
expectations of the German National Academic Foundation are fulfilled. The second
category is the general importance of social competencies and skills for everyday life
or the carrier. Social competencies could also be important for CS (third category). In
the fourth category all other answers were summarized, e.g. contest publicity (see
table 4).

Table 4. Why are social competencies important for the contest/ computer science education?

Code Category Anchor
A Guidelines ñThe national winners will receive a scholarship of the

4 In this conte t ñpointò is a synonym for grade. The worst grade is 0 points and the best grade
is 15 points.

Fehler! Verwenden Sie die Registerkarte 'Start', um title dem Text zuzuweisen, der hier
angezeigt werden soll. 7

German National Academic Foundation (german: Studien-
stiftung des deutschen Volkes) without any other demands.
The foundation e pects social skills on a very high level.ò

B Important for
everyday live
or carrier

ñIn the society we are living in we have to cooperate
always with others at some point.ò

C Important for
CS

ñI think the idea that group work should be established in
all subjects is a little overrated. The way we do it in CSE is
just the right way.ò

D Others ñIf a national winner or an award winner [é] misbehaves,
it would be bad publicity for the contest [é].ò

In order to get an idea of the importance of a specific social aspect (cooperation and
the willingness to implement an idea of another student or participant) relatively to a
specific non-social aspect (having a good idea to solve a problem) question 4 was
posed. Both alternatives are necessary to solve a problem in both scenarios. The
question was formulated as a forced choice question, but because of openness of the
interview neutral answers were possible. Neutral answers could be ñboth aspects are
importantò (category C or ñthe important depends on the problem context, the idea or
the complexity of the implementationò (category B, see table 5). The answers to that
question will be summarized in one category. If answers of a test person can be
assigned into different categories, the main idea of the answer has to point out with
the help of the context.

Table 5. What is more important: Having a good idea or the implementation of the solution?

Code Category Anchor
A Idea is more

important
ñ[é] I would prefer the idea. In my opinion the objective is
to identify those who are able to solve hard problems.ò

B Depends on
the complexity
of the idea or
the
implementatio
n

ñThere is not a generalized answer to that question. If
someone has a trivial idea and it is a lot of work to realize
it, then I would not appraise the idea highly. On the other
hand if the idea is brilliant and it is not so much work to do,
this is mostly relevant for scientists, not for participants, I
would rate the idea highly.ò

C Neither idea
nor implemen-
tation is more
important

ñBoth could be important. I would not go so far and say
something is more important. It depends on the
cooperation.ò

D Implementatio
n is more
important

ñIn school conte t it is more important to implement a
reasonable solution because the result matters [é]ò

The last question was about criteria for appraising social skills (see table 6). Four
categories were found (social behavior, functioning of cooperation, equitable

8 Gabor MeiÇner

distribution of group work and others). In contrast to the questions 1, 2 and 4 all
answers will be covered (also answers that were given more than once).

Table 6. Which criteria do you apply when appraising social skills?

Code Category Anchor
A Social

behavior
ñI think in such a contest you have to ensure to promote
well-behaving participants instead of nerds.ò

B Functioning of
cooperation

ñI appraise the functioning of the group work.ò

C Equitable
distribution of
group work

ñIs the workload well-distributed?ò

D Other criteria ñMy appraisals? I appraise the product, especially the
program code and the documentation [é]. What else? The
students have to present their product in front of the class
[é] and the other students have to ask questions. The
quality of these questions is part of the appraisals.ò

4 Results

A clear difference between the investigated groups turned out by analyzing the
answers of the first question. Four times the interviewed teachers gave an answer that
can be categorized to an additive appraisal structure (category A). On the other hand
four jury members tended to a multiplicative appraisal structure (category B). Two
teachers and one jury member gave no (clear) answer to that question.

In order to see the importance or the weight of the social aspects in the overall
performance question 2 were posed. The teachers tend to appraise social skills higher
than the jury members. The teachers said that social aspects are important (n=3) or
moderately important (n=2). The importance of social aspects in the overall
performance was assumed by the jury members as moderately important (n=2) or of
little importance (n=3).

With the help of the third question the reasons for the importance of social aspects can
be pointed out. In this question there were no clear differences between the groups.
Teachers said that guidelines (n=2) require the appraisals of social aspects, that they
are important for everyday life or career (n=2) and that they are an essential aspect of
a good performance in CS (n=2). Similar to that the interviewed jury members
answered only once that guidelines are the reason for the importance of social aspects.
Answers that can be categorized into category B or category C were given twice by
the jury members and also other answers were given twice (for an example see Table
4).

The fourth question focused on a statement if an idea or the implementation is more

Fehler! Verwenden Sie die Registerkarte 'Start', um title dem Text zuzuweisen, der hier
angezeigt werden soll. 9

important for the overall performance. The jury members tend to a higher importance
of the idea (n=4) or to an appraisal that depends on the complexity of both aspects
(n=1). The statements of the teachers were more diverse. A higher importance of the
idea (n=2) was also mentioned as like as a higher importance of the implementation
(n=2) and similar importance of both factors (n=2).

Table 7. Answers to question 5.

Test
person

Answers Test
person

Answers

J1 AABCC T1 BCDDD
J2 AABCC T2 D
J3 AAC T3 CCDDDD
J4 ADD T4 CDDDD
J5 No criteria T5 BC

 T6 ABCDDDD

Another difference can be shown with the help of the answers to question 5 about
criteria of the ñsocial performanceò (see table 7). On the one hand jury members often
gave the answers that can be summarized as ñsocial behaviorò (category A),
functioning of group work and equitable distribution of the group work. On the other
hand teachers gave only once an answer that can be categorized as ñsocial behaviorò.
Other criteria were mentioned more often. Sometimes these criteria were not social
aspects (see table 5). Similar to the group of the jury members they often mentioned
answers of the categories B and C.

Fig. 1. Prime example for jury membersô appraisals

10 Gabor MeiÇner

Fig. 2. Prime example for teachersô appraisals

Typical answers of jury members and teachers are illustrated in figure 1 and 2. The
figures show specific test persons of both groups, but can be treated as prime
examples.

5 Discussion and Challenges

As mentioned the interviewed teachers use an additional structure to break into
specific criteria and summarize the parts to an overall performance. On the other hand
the interviewed jury members use a holistic way. The social and non-social parts of
the overall performance have to be connected multiplicatively. A multiplicative
structure implies a higher importance to low performance factors because these
factors make a good overall performance impossible. The answers to question 2 seem
to be contradictive. Teachers attribute social aspects a higher importance than jury
members do (see table 8).

Two reasons for that difference can be pointed out with the help of material. First,
contest guidelines demand that price winners have social skills on a high level. Jury
members have to exclude participants with an almost bad behavior. Teachersô
guidelines demand a comprehensible and fair grading. From the teachersô point of
view it would not be fair to give a bad mark because of only one factor. A teacher
described the school as a ñprotected roomò. Maybe the contest does not offer such a
protection by the appraisals of the jury members. The second reason for the
differences between the answers to question 1 and 2 could be the subjective
perception of the own role and objectives. From this perspective the interviewed jury
members said that they want to find out which participants could be the best computer
scientists. In contrast to that teacher may focus mainly a general education. Social
competencies seem to be an important part of that general education. This impression

Fehler! Verwenden Sie die Registerkarte 'Start', um title dem Text zuzuweisen, der hier
angezeigt werden soll. 11

could be underlined by analyzing the answers to question 4 about the role of ideas and
implementations. In the mentioned context the implementation of an idea has to be
done in group work, so social competencies are necessary to ensure a good product.
Jury members tend to attribute a higher importance to the ideas, so it can be assumed
that they percept their task in finding the best computer scientists (and not the best
team worker). On the other hand teachers cannot observe the group work all the time
and because of that they cannot ensure to assign an idea to a specific person. In this
context the product and a comprehensible way to the product could have another
importance.

Table 8. Generated hypothesis

Question Hypothesis
1 Teachers use an additive and jury members use a multiplicative structure

to summarize social and non-social aspects.
2 For teachers social aspects are more important for the overall

performance than for jury members.
3 -
4 Jury members focus the aspect of having a good idea. Teachers do not

prefer the aspect of having a good idea nor the implementation.
5 Jury members mention social behavior more often than teachers.

Jury members often focus social behavior as an aspect for their appraisals.
Meanwhile, only one teacher mentions that aspect. Maybe a reason for that could be a
more specific catalog of criteria which teachers developed in their pedagogic
education, with their experience and by reflecting guidelines and other impacts (e.g.
the demand of comprehensible marking). The answers to question 3 do not show such
differences between the investigated groups.

In order to test the generated hypothesis a questionnaire or other quantitative methods
could be used. Some hypothesis (hypothesis 1, 2 and 4; see table 8) could be tested
directly by developing similar questions. For testing hypothesis 5 it could be useful to
formulate questions according to the importance of the different aspects.

References

1. Beck, E. et al: Adaptive Lernkompetenz: Analyse und Struktur, Verªnderung und Wirkung
handlungsstreuenden Lehrerwissens, Waxmann, M¿nster 2008.

2. Cormack, G. et.al.: Structure, Scoring and Purpose of Computer Competition. In Pohl, W.
(Ed.): Perspectives on Computer Science Competitions for (High School) Students (2006),
http://www.bwinf.de/competition-workshop/Submissions/11_Cormack+.pdf.

3. Glªsel, J., Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse, 3rd Edition, VS
Verlag, Wiesbaden 2009.

12 Gabor MeiÇner

4. Kollee, C. et al: Computer Science Education and Key Competencies. 9th IFIP World
Conference on Computers in Education - WCCE 2009, http://www.die.informatik.uni-
siegen.de/e-publikationen/Publikationen/2009/WCCE2009_pap147.pdf

5. Mayring, P.: Qualitative Content Analysis [28 paragraphs]. Forum Qualitative
Sozialforschung / Forum: Qualitative Social Research, 1(2), Art. 20, http://nbnresolving.
de/urn:nbn:de:0114-fqs0002204 (2000).

6. MeiÇner, G.: Aufgaben der ersten Runde des Bundeswettbewerbs Informatik ï Kontinuitªt
und Wandel. Didaktik der Informatik - Mºglichkeiten empirischer Forschungsmethoden und
Perspektiven der Fachdidaktik, 81-92 (2010).

7. OECD: The Definition and Selection of Key Competencies. Executive Summary (2005),
http://www.oecd.org/dataoecd/47/61/35070367.pdf.

8. Pohl, W.: Computer Science Contests for Secondary School Students: Approaches to
Classification. Informatics in Education (2006).

9. Pohl, W.: Computer Science Contests in Germany. Olympiads in Informatics, 141-148
(2007).

10. Schwill, A., Romeike, R.: The Development of a Regional CS Competition. Proceedings of
the 4th conference on Informatics in Secondary Schools ISSEP, Z¿rich, 106-116 (2010).

11.Th¿ringer Kultusministerium: Lehrplan f¿r das Gymnasium Informatik (1999),
http://www.thillm.de/thillm/pdf/lehrplan/gy/gy_lp_if.pdf

12. Walberg, H. et al: Syntheses of educational productivity research Original Research Article
International Journal of Educational Research, Volume 11, Issue 2,
1987, Pages 147-252.

http://www.thillm.de/thillm/pdf/lehrplan/gy/gy_lp_if.pdf

Exploring Computer Science Teachersô Subjective
Theories on Designing their Lessons

Ana-Maria Mesaroĸ and Ira Diethelm

Carl von Ossietzky University
Computer Science Education

26111 Oldenburg
Germany

ana.maria.mesaros@uni-oldenburg.de, ira.diethelm@uni-oldenburg.de

Abstract. In this paper we will show first steps in the research area of
subjective theories of computer science teachers at secondary schools and lay
the theoretical basis for that. After clarifying our approach that uses semi-
structured interviews we will present selected results from the pretest. This
initial analysis confirms that exploring computer science teachers subjective
theories on designing their lessons is an important and promising research field.
The pretest showed that computer science teachers really have very diverse
perceptions on how to design lessons on the topic networks and the Internet.
After knowing teachers subjective theories we can include them in designing
effective teacher training programs and thus improve teacher education.

Keywords: subjective theories, teacher training, educational reconstruction

1 Introduction

From a constructivist point of view and based on the idea of the Educational
Reconstruction [8] effective lessons can only be designed if students perspectives are
recognized as being that important as the scientific clarification of the subject matter.
Therefore, the structuring of lessons needs to include students perspectives.

For the design of teacher education for computer science teachers at secondary
school this basic assumption can be adapted. Therefore the subjective theories of
computer science teachers have to be taken into account when it comes to the design
of teacher educational programs. In order to activate teacher to learn and to change
certain behaviors or teaching patterns one needs to comprehend and include the
existing teachers perspectives [12].

Consequently, we need to investigate teachers subjective theories [6] on designing
computer science lessons. Our approach is to investigate them with semi-structured
interviews and to analyze them afterwards with the qualitative content analysis [9].

Here, we show the motivation for this research approach on computer science
teachers subjective theories on designing lessons. Additionally we set the theoretical
framework for research in this field. We first describe the research questions which

2 Ana-Maria Mesaroĸ and Ira Diethelm

we focus on in this research area. Further we show the theoretical framework in which
these questions can be answered. Therefore, we present the model of Educational
Reconstruction and its adaption for computer science teacher education. Afterwards
the concept of subjective theories is explained.

After clarifying the theoretical framework the research methodology is presented,
clarifying which design we chose to answer the research questions. Than we describe
the structure of this study, the data collection instrument and selected preliminary
results. As a forecast we present first conclusions and the expected results from
further investigation.

2 Situation of Computer Science Teachers

Compared to teachers of other subjects computer science teachers are in an
inconvenient situation. The biggest problem is that they are a minority within the
teaching community and that many schools are provided with only one or even no
computer science teacher. This fact makes collaboration amongst computer science
teachers very difficult [3]. Often they do not have colleagues to share their ideas and
materials and to get feedback on them. This sometimes inhibits the development for
field specific pedagogical confidence amongst the computer science teachers.

Another problem is caused by the fact that computer science is a very young
discipline that has not been established in secondary schools yet. As a consequence
there is a diversity of materials and no mandatory standards [3] nor a mandatory
curriculum. The materials are based on different concepts for teaching computer
science and often not tested. The missing standards lead teachers to the challenge of
choosing their own topics for computer science education. That underlines the
importance of the subjective theories of computer science teachers because they have
a significant impact on the topics that are taught during computer science lessons in
school.

A further hint on the wide range of computer science teachers subjective theories
is the fact that there are several ways to become a computer science teacher. Some of
them studied computer science education; other ones have studied computer science
without any pedagogical content and others were teacher for other subjects and
participated in additional computer science courses [3]. Fast changing technological
innovations make computer science even more difficult to teach. Computer science
teachers often have to deal with changing conditions and new tools [3], more than
teachers of other subjects.

Some of the facts mentioned above do not seem to be an observation specifically in
Germany but may show tendencies that can be applied to more places. Changing
conditions and different educational concepts are widely spread difficulties of
computer science education.

Exploring Computer Science Teachersô Subjective Theories on Designing their Lessons
3

3 The Research Questions

In such special and challenging situation teacher trainings for in-service teachers
become even more important. For the aim of designing sustainable in-service teacher
training we need to know the teachers, their thinking and the preconditions about
computer science education, in order to meet their needs with an adjusted training
program.

This research tries to give a first overview of the patterns that guide teachers in
their planning processes. In this way we get an impression of the subjective theories
of computer science teachers. The planning of courses for computer science teacher
training will benefit from the results of this study. If the existing subjective theories of
computer science teachers are known, teacher education can be designed based on
them. Researches show that incorporating teachers perspectives into teacher training
lessons makes them more efficient [12].

Therefore, the main question of this research is: What are teachersô subjective
theories on designing computer science lessons?

Therefore, the following two questions have to be answered:

 Which subjective theories guide teachers thoughts while designing lessons on the
topic networks and the Internet?

 What importance do students perspectives have in computer science teachers
planning for these lessons?

The theoretical framework for this research is given by the model of Educational
Reconstruction, adapted for teacher education. The model shows a possible way to
design teacher training lessons based on the perspectives of computer science
teachers.

4 The Theoretical Framework

These research questions are embedded in the framework of Educational
Reconstruction for teacher education which shows the significance of teachers
subjective theories on the design of their lessons. This model is used in several
educational research areas and can be adapted for computer science education as well.

To clarify the deduction of the research questions we show the theoretical
environment in which they are embedded. Therefore, we first present the model of
Educational Reconstruction and describe how it can be adapted for teacher education
in computer science. Afterwards we introduce the concept of subjective theories
which serves as the basis of this research.

4.1 The Educational Reconstruction

The model of Educational Reconstruction [8], as shown in figure 1, can be used as
a framework for educational research, for curriculum development and to improve
teacher education. It was developed for natural sciences, but it can also be adapted for

4 Ana-Maria Mesaroĸ and Ira Diethelm

other areas as well. The main idea of the model is the integration of the students'
perspectives on a chosen topic and the clarification and analysis of the subject matter.
Out of this integration guidelines for the design of learning environments can be
generated.

Therefore the design of learning environments includes not only the scientific view
of a subject matter but also the students perspectives on this topic. Furthermore,
students' perspectives are as important as the clarification of the science content for
planning lessons on a subject matter.

Fig. 1 The Educational Reconstruction see[8]

Following, the idea of Educational Reconstruction means that the science content
is expanded by students' perspectives so that it can be arranged for teaching. The
science content is being decomposed and enlarged by students perspectives.
Therefore the content structure for teaching becomes much more complex than the
science content structure itself ([8], p. 174). This process of rearranging and
expanding the science content for designing learning environments is the main
principle of Educational Reconstruction.

4.2 The Educational Reconstruction for Teacher Education

The core ideas of the Educational Reconstruction can be adapted for teacher
education, to improve not only the lessons at school but also teacher training. It might
also be used for designing guidelines for the education of pre-service and in-service
teachers [8], see fig. 2.

This adaptation has varying consequences. First, teachers need to recognize the
importance of students perspectives for learning and they need to be familiar with
typical perspectives on the topic, in order to include them in the computer science
lesson planning process. Another point of view is designing courses for teacher
education where the teacher takes the role of the learner. Teacher education courses
should not only show teachers the importance of including students perspective into

Exploring Computer Science Teachersô Subjective Theories on Designing their Lessons
5

their lessons. They need to meet teachers needs themselves and ñpractice what they
preachò as well.

The educational structuring of computer science lessons is influenced by the
subjective theories of teachers. As a consequence a description and analysis of
teachers perspectives status quo is needed. Therefore an approach is necessary for
investigating computer science teachers subjective theories on designing their lessons
on a certain subject matter. As a result of this investigation we will show typical
conceptions of computer science teachers.

Fig. 2 The Educational Reconstruction for Teacher Education see [8]

These subjective theories of computer science teachers on their teaching are as

important as the domain specific educational concepts. That means that designing
teacher education can not only be grounded on educational concepts of computer
science. They must include the personal aspects of teachers, their pedagogical
knowledge, their subjective theories and their conceptions of educational structuring
as well [8].

Through connecting teachers perspectives on educational structuring of their
computer science lessons with concepts of computer science education, in-service
teacher trainings can achieve a fulfillment of the actual needs. To sum up we keep
hold on the fact that teachers perspectives on educational structuring are influenced
by their subjective theories on designing computer science lessons. Therefore we need
to define the concept of subjective theories.

4.3 Subjective Theories

Kelly illustrated 1955 what subjective theories are and what function they have,
without explicitly naming them: ñMan looks at his world through transparent patterns
[é] which he creates and then attempts to fit over the realities of which the world is
composedò ([7], Page 7). He named these patterns ñpersonal constructsò and
explained them as ñways of construing the worldò ([7], Page 7). Teachers also have
this personal constructs on the design of learning environments. Many scientists name

6 Ana-Maria Mesaroĸ and Ira Diethelm

them differently, like ñnaiveò or ñsubjectiveò theories. Groeben [11] named them
ñsubjective theoriesò and designed a research approach for educational research on
these personal theories of teachers.

Based on Kelly [7] and Groeben et al. [11] we define subjective theories as
individual cognitive structures of self- and worldviews that have function of
explanation and prediction.

Because of the missing standards in computer science, computer science teachers
can, and have to, decide on how a specific subject matter is taught at school, where
they set priorities and in which intensity they handle a topic. Following Dann [1],
these decisions are not only affected by their content knowledge but also by their
personal theories that determine their thoughts about computer science lessons.

5 The Design of the Investigation

The intention of this study is to explore computer science teachers subjective
theories on designing computer science lessons. Groeben et al. [11] define the human
being as ña reflective and (potentially) rational subject, capable of language and
communicationò, see also [6]. The fact that subjects are reflective and capable to
communicate this reflection implies that subjective theories can be investigated with a
dialogue-hermeneutic method [6] such as an interview. The presented inquiry relies
on the fact that subjective theories can be explored through interviews. The method
we use is a semi-structured guided interview. After transcribing these interviews they
will be evaluated with the method of qualitative content analysis, following Mayring
[9].

The aim of this research is to create guidelines for teacher training. As a
consequence it is not important to illustrate how often a belief is represented. But it is
important to identify a wide range of computer science teachers subjective theories
that occur during our investigation. These theories are considered to be valuable for
the inclusion within the design of programs for teacher education. Because the focus
of the research is on each subject it is not important to have a representative number
of interviews but to have the opportunity to understand each subject. That makes a
qualitative research approach necessary.

We are aware of the gap between planning a lesson and a carried out lesson and we
do not claim to solve this problem. Therefore we decided to set the focus on the
planning action, so that the subjective theories that lead teachers decisions
preliminary to the lessons are investigated. Because of the predictive function of
subjective theories investigating teachers thoughts on designing lessons provides
enough information about teachers perspective on educational structuring of
computer science topics.

To enhance the quality of the answers we decided to do the investigation on a
specific topic. This also helps to compare the results of different teachers interviews.
For several reasons we chose the topic networks and the Internet. Some of these
reasons are listed below:

Exploring Computer Science Teachersô Subjective Theories on Designing their Lessons
7

 Studies show that the Internet has a high relevance to the everyday life of children
[10].

 The topic of communication is named by Denning as one of seven great principals
of computing [2].

 The Computer Science Education Standards published by the German Association
of Computer Science (Gesellschaft f¿r Informatik ï GI) [5] includes the topic of
networks and the Internet.

 Students' perspectives on this topic have been investigated lately [4].

ñNetworks and the Internetò is not just because of the computer science content
like the idea of communication an important topic in computer science education.
Beyond that, the role of the Internet in the everyday life of children increases daily.
Therefore, it should not be missing in computer science lessons as it often does.
Furthermore, this topic can be connected to other subjects such as politics, history or
economics as well.

Of course there are other important topics in computer science as well, but we
think that this is one of the most important. Therefore, the data collection is based on
the design of a lesson on networks and the Internet. In the following we present the
structure of the interview.

6 Data Collection and First Findings

For the data collection we chose a semi-structured guided interview. This means,
that additionally to the planned questions other questions can be asked as well. This
may happen if utterances have not been understood or if there is a need for more
detailed explanations. Sometimes questions already have been answered before they
were actually asked by the interviewer. In this case, the interviewer has to include the
given answers into the question and ask if the teacher has something to add. Thereby
the teacher gets the opportunity to elaborate on the first answer and give more
information which can be revealed.

In the following we try to give a general overview on the different key aspects of
the interview. Therefore we list some questions and show selected, interesting
answers.

6.1 Planning of the Current School Year

As an introductory question we asked the teacher how he or she planned the
current school year. This question gives an overview on the topics the teacher has
been planning for this year. Furthermore, it directs the focus on the (professional)
expertise of the teachers, of their planning in other topics and helps to generalize the
results of this study. Additionally, this question provides the opportunity to talk about
their special situation in their school and about the problems they have to solve. This
is very important because computer science teachers often do not have computer
science colleagues at their school to exchange experiences. Thereby this question
opens a new conversation level at the beginning of the interview in which the teacher

8 Ana-Maria Mesaroĸ and Ira Diethelm

feels understood. They start to speak quite openly and mostly start to state that they
feel a lack of computer science knowledge.

6.2 Designing Lessons on Networks and the Internet

Then, questions follow about the concrete planning of lessons on networks and the
Internet. Teachers are asked about the order of contents, teaching methods and
learning objectives. These are well known main aspects in designing lessons.

Since none of the teachers that we interviewed in our pretest taught or planned
these lessons yet, a short pause followed the question on how they would design a
computer science lesson about networks and the Internet. This was followed by an
astonished: ñNow?ò or ñReally?ò Afterwards they started thinking about how they
would plan this lesson for the first time. The following descriptions show the variety
in designing computer science lessons:

One of the teachers would try to avoid technical input in these lessons and set the
focus on the impact of the Internet on the society. He would start by generating an
error like a homepage that can not be found. In this way he intends to increase the
interest of the students on this topic. As an aim for his lessons he would like his
students to know why this error occurs and how it can be fixed. Additionally, he
explained that first time teaching a topic is just an exercise or experiment in which he
finds out what to improve next time.

Another teacher would split the teaching unit into two focus areas. The first one
would focus on the usage of the Internet and the second one on the structure and the
functionality of it. He could not elaborate on the structure of the second focus. He
explained his lack of knowledge on this subject matter and uttered he would wait for
his colleague to plan the second part and afterwards he would adopt this planning.

The third teacher had a very clear picture of how he would structure the lessons.
He thought about an example to start with and about the order of the themes. He was
not sure which example to take at the beginning but mostly he liked the idea of
students trying to seek informations about them in the Internet. Although he does not
clearly know how he can build a bridge to the technical contents he knows that topics
like network topologies, protocols and the OSI model would follow.

Another teacher had a different point of view on this unit. From his point of view
students should learn how to design and build up a computer network and use their
knowledge to improve the school infrastructure. He would just give a short theoretical
input at the beginning of the lessons and afterwards let the students work quite
independently because his students are very good at researching information and self-
guided learning.

6.3 The Studentsô Perspectives

Afterwards, questions about the students' perspectives follow. Teachers are asked
to think of the topic and evaluate whether it was interesting for their students and of
possible difficulties.

Exploring Computer Science Teachersô Subjective Theories on Designing their Lessons
9

Our pretest has shown that teachers expect their students to have high interest in
this topic. The difficulties they can imagine are strongly connected to their own
challenges on this topic. As soon as it becomes more detailed and the scientific level
increases teacher see difficulties of learning. There were just a few answers to these
questions because the teachers we asked could not really imagine where difficulties
might arouse. That is why we are going to add some additional questions to the main
survey and present a students perception to the teachers and ask them how they
would react on that. This may hopefully lead us to more results.

6.4 Teachersô Attitudes Comparing Computer Science to other Subjects

The following questions focus on the other subjects taught by teachers. In
Germany teachers normally teach at least two subjects. After getting the information
of their second subject we ask them to reflect on any differences to the planning for
other subjects.

Analyzing these answers we detected an interesting phenomenon: One teacher
always searches for fun in his computer science classes, but he does not search for fun
in his math classes. Therefore, he spends a lot of time planning something impressive
and entertaining for his computer science lessons. For the math classes he has a
scheme how lessons have to be constructed. There is a theory part, in which he gives
an input, then he gives an example how to use the new theory and afterwards the
pupils have to do some exercises. When planning math lessons he implements a
lesson based on the scheme and he does not search for something impressive. This
phenomenon may be an explication for another encountered circumstance: the
unhappiness with existing material for computer science lessons. An explanation for
this might be the fact that computer science teachers have huge expectations on
computer science materials.

6.5 Teachersô Biographical Data

To close the interview questions about the teachers biography are asked. These
questions are intentionally at the end of the interview, because there is a phenomenon
specific to computer science teachers that can ruin the interview from the beginning:
Computer science teachers often say ñI haven t studied computer science, so I m not a
proper computer science teacher.ò They perceive themselves as an interim solution
due to the lack of properly educated computer science teachers.

Our investigation so far shows that there are several ways and diverse motivations
on becoming a computer science teacher. Two of the interviewed teachers had taken
additional courses to become a computer science teacher. The other two had the
qualification to teach other subjects (math, physics and chemistry) and teach
computer science without any additional training.

These findings confirm that in Germany computer science teachers have highly
diverse ways of becoming a computer science teacher. This might apply to other
countries as well. The fact that teachers have diverse ways of becoming computer

10 Ana-Maria Mesaroĸ and Ira Diethelm

science teachers led us to the conclusion that they most probably have different
subjective theories about designing computer science lessons.

7 Conclusions and Future Work

According to the fact that we are just at the beginning of this study, we are only
able to present brief results of our pretest. They already illustrate that computer
science teachers subjective theories is an interesting research area that needs to be
explored. These few interviews deliver results that motivate us to investigate further
teachers perspectives on designing computer science lessons. As first results we can
sum up:

Computer science teachersé
 have different ways in designing lessons on a given topic. They set different

focuses and handle the topic differently.
 do not have a clear idea of the students perspectives.
 have diverse ways of becoming a computer science teacher.
 have various points of views on computer science compared to their other subject.
 often feel a lack of knowledge on computer science.
 think they are not a proper computer science teacher because of their (missing)

qualifications.

These findings have to be used carefully because the main investigation follows
this summer. As a change to the main survey, we are going to focus more on the
knowledge of teachers about students perspectives on the topic of networks and the
Internet. This might give us more detailed answers about when and where teachers
think that students have difficulties in understanding this topic; the first interviews did
not really contain information about that. That is why we are going to confront the
teachers with a specific perspective of students such as that students think the Internet
consists of only one big computer and ask how he would react if this view occurs in
his lessons [4].

As a result of the main survey we expect to identify and be able to describe
different approaches for teaching the topic networks and the Internet. We also expect
that further results will permit a generalization of the subjective theories for other
topics of computer science.

The fact that these interviews already showed very diverse perceptions shows a
tendency on how different computer science teacher think about designing their
lessons. These few interviews already show that we have to include teachers
perspectives on planning computer science lessons in the process of designing teacher
education.

We showed here an approach that leads us to our aim, which is generating
guidelines for teacher training. Computer science teachers subjective theories should
serve as a solid foundation for planning lessons for teacher training. If we understand
how teachers think about their classes we have the chance to guide them to the aim of
having better computer science lessons in schools. Furthermore, the results of this

Exploring Computer Science Teachersô Subjective Theories on Designing their Lessons
11

investigation might show the needs for teacher training of computer science teachers.
The results of this study are going to foster the improvement of in-service teacher
training.

8 References

[1] H.-D. Dann. Subjective theories and their social foundation in education. In M. von
Cranach and W. Doise, G. Mugny. Social representations and the social bases of
knowledge, p. 161-168., Lewiston, Hogrefe & Huber, 1992.

[2] P.J. Denning. Great principles of computing. Communications of the ACM, 46(11):15-20,
2003.

[3] I. Diethelm, C. Hildebrandt, L. Krekeler. Implementation of computer science in context -
a research perspective regarding teacher-training. In Koli Calling 2009, p.97-100, Koli,
2009.

[4] I. Diethelm, S. Zumbrªgel. Wie funktioniert eigentlich das Internet? ï Empirische
Untersuchung von Sch¿lervorstellungen zur Funktionsweise des Internets (How does the
internet work? ï Empirical invesitigation on studentsĂ perceptions of the functionality of
the internet), In: 6. Workshop der Didaktik der Informatik, p. 33-44, Kºllen Verlag, Bonn,
2010, in German.

[5] Gesellschaft f¿r Informatik (GI) e. V. Grundsªtze und Standards f¿r die Informatik in der
Schule (principles and standards for computer science at school). LOG IN 150/151(28) :
LOG IN Verlag, Berlin, 2008, in German.

[6] N. Groeben, B. Scheele. Dialogue-hermeneutic method and the "research program
subjective theories". Forum: Qualitative Social Research, 1(2):9, 2001.

[7] G. A. Kelly. The psychology of personal constructs. Routledge, London. Kelly, G. A.
(1991): The psychology of personal constructs. London: Routledge.

[8] M. Komorek, U. Kattmann. The model of educational reconstruction. In S. Mikelskis-
Seifert, U. Ringelband, M. Brueckmann (Eds.), Four Decades of Research in Science
Education - from Curriculum Development to Quality Improvement, chapter 7, p. 171-
188.Waxmann,2008.

[9] P. Mayring. Qualitative content analysis. Forum: Qualitative Social Research, 1(2):10,
2000.

[10] Medienpªdagogischer Forschungsverbund S¿dwest JIM-Studie 2010: Jugend,
Information, (Multi-)Media (youths, information and multi-media). Forschungsberichte,
Baden-Baden, 2010, in German.

[11] J. Schlee, B. Scheele, N. Groeben, D. Wahl. Forschungsprogramm Subjektive Theorien.
Eine Einf¿hrung in die Psychologie des reflexiven Subjekts (research program on
subjective theories). A. Francke Verlag, T¿bingen, 1988, in German.

[12] D. Wahl. Lernumgebungen erfolgreich gestalten. Vom trªgen Wissen zum kompetenten
Handeln (The effective design of learning environments). Julius Klinhardt Verlag: Bad
Heilbrunn, 2005, in German.

Discovering the Creativity in Informatics

Katarína Mikolajová
1
, Martina Kabátová

1
,

1 Department of Informatics Education, Faculty of Mathematics, Physics and Informatics,

Mlynská dolina,

842 48 Bratislava, Slovakia

{katarina.mikolajova, martina.kabatova}@fmph.uniba.sk

Abstract. In this paper we scrutinize various aspects of creativity in education

and namely in school informatics. We have reviewed many literature sources

looking for definition of creativity in informatics and the result was not

satisfactory. We decided to build a definition and theory about various aspects

of creativity in informatics using the qualitative research methods and grounded

theory approach. The emerging theory is compared with literature. In the paper

we present early version of our findings.

Keywords: informatics, education, creativity, digital technology

1 Introduction

We are living in a creative society, where new ideas and original solutions are

becoming more and more valuable. In today´s fast changing world we need to prepare

our pupils for uncertain future which is neither possible to imagine nor to define key

competencies and skills for living in the world in twenty or even ten years.

We need to prepare pupils for their lives and future professional careers. What will

they definitely need is the ability to quickly adapt to new circumstances, to

communicate, to cooperate in team and "think and act creatively" [1].

In the last three years (since the national school reform in 2008) discourse about

creativity in education has become more important in Slovakia. The National

Curriculum in Slovakia highlights the importance of fostering creativity in schools

and in informatics as well.

Although The National Curriculum emphasizes fostering creativity in informatics

in various contexts, the explicit definition of creativity as well as ways how to support

it are missing. We need to find a key characteristic of creativity to define this concept

and determine relevant factors, which can influence creative process in schools. Since

digital technologies (when properly used) can facilitate creative process we are trying

to focus on them and characterize digital tools that support creativity.

2 Creativity in Education

Although creativity is often and widely discussed on popular and academic levels,

there is still no consensus on explicit definition of creativity. The term creativity is

used frequently and with different meanings – there are various perspectives for

studying creativity and many different definitions of creativity in the psychology.

There are two essential attributes in almost every definition of creativity – novelty

and value [2].

Today we know that creativity is not exclusive to the geniuses or extraordinarily

gifted people. Everyone is creative at some level and we should develop pupil´s

creative skills during the educational process as one of the key competencies for

living in 21st century. Creativity is a complex capacity, not only general ability [3]

which requires three variables to appear [4]:

 domain-relevant skills,

 creativity-relevant skills,

 and task motivation.

The definition of creativity applicable to the educational process is one in the

NACCCE report, which defines creativity as: "Imaginative activity fashioned so as to

produce outcomes that are both original and of value" [5]. But what does it mean to

produce something original and valuable in the school setting? Banaji et al. [6] refer

to two key implicit distinctions in this definition – "it distinguishes between

imagination and purposeful imagination and defines originality as new to the child,

not necessarily the world".

For better understanding of creativity we need to distinguish between two types or

levels of creativity. Boden [7] describes historical creativity (h-creativity or eminent

creativity, also labeled Big-C creativity) and psychological creativity (p-creativity,

also labeled little-c creativity). Whilst Big-C creativity appears exceptionally and

brings historically novel and original ideas which are fundamental in the field and

nobody has had them before, little-c creativity is typical for everyday creative

experiences that help to express ideas, solutions, emotions or opinions in original

way. This type of creativity is also called everyday creativity and brings novelty

which is relevant and meaningful for a certain group of people [3], for example

classmates.

Beghetto & Kaufman [4] broaden conception of creativity and describe mini-c

creativity, which is typical and essential for learning process, when pupils construct

their personal knowledge and understanding. Although the problem solution may be

well-known or introduced in the textbook, it can be new and original in relation to

pupil´s previous work and knowledge, if he or she explores this solution by

himself/herself. The main distinction between little-c and mini-c creativity is in

judgment - whilst both Big-C and little-c creativity "rely on interpersonal and

historical judgments of novelty", mini-c creativity produces something novel and

meaningful to the individual which is intrapersonally evaluated [4].

http://slovnik.azet.sk/preklad/anglicko-slovensky/?q=discussed

2.1 Creative teaching

The role of the teacher is crucial to promote creativity and facilitate creative

activities within the classroom. They establish conditions and atmosphere which

support the creative process, conduct creative learning activities, actively engage

pupils and through their thinking and acting represent a role model of creative

behaviour.

Feldhusen & Treffinger [8] and QCA [9] provided recommendations for

establishing atmosphere which stimulates pupil´s creativity and give advice to the

teacher how to promote creativity within the classroom:

 teacher should appreciate and foster unusual ideas, solutions and responses of

students. It is important to perceive failures or mistakes positively as a part of the

creative process,

 teacher should provide the pupils with various resources, prompts and support,

enable them to reflect and concentrate,

 teacher should be open to pupils’ ideas or interests and adapt them into lesson plan

if possible. Unexpected events can motivate and stimulate pupils to work

creatively, it´s allowed to put aside lesson plan and 'go with the moment',

 time is very important in the creative endeavor, pupils need sufficient time to think

about creative ideas and explore them, that might not occur immediately or

spontaneously,

 teacher should encourage pupils to solve divergent problems which support lateral

thinking, encourage pupils to ask questions, make connections, work

imaginatively, ask open-ended questions such as "What if...?" to explore various

perspectives,

 teacher should establish a confidence building approach where pupils can take risk

and freely present, communicate and share their ideas within the classroom.

Atmosphere in which pupils feel safe is key factor for stimulating creativity,

 teacher should have fun and laugh with pupils, respect them, value what pupils do

and say, reward originality and imagination,

 teacher should participate in creative activities, act and think creatively as a role

model. Demonstrating that he or she is still learning can help to establish an

opened atmosphere,

 teacher should create conditions for teamwork, where pupils can cooperate with

classmates or even with pupils from a different age group.

2.2 Digital technologies that support creativity

Digital technologies (DT) have the potential in supporting creativity and creative

process. Loveless [10] describes four key features that digital technologies provide for

creative process:

 provisionality – they provide easy way to make changes or make step back during

the performance, to try alternatives, to make drafts or to trace of the thinking

process and development of ideas,

 visualization and interactivity – DT can provide dynamic, reasonable and

immediate feedback on decisions or actions currently made, they can simulate or

visualize processes or realities and enable manipulation of variables or changing

conditions, so users can better understand and make connections and relations,

 capacity and range in which DT provide access to information from all over the

world in any time, it’s also wide range of tools that digital technologies enable us

to use in thinking and problem solving process,

 speed and automatic functions which enable users to store, transform, transmit

and especially analyze, synthesize, interpret, share and communicate information

and ideas more effectively or more intelligibly.

Greene [11] and Schneiderman [12] analyze properties and characteristics of

digital tools that support creativity. They define some requirements that DT should

fulfill to facilitate creativity:

 DT should support "pain-free explorations and experimentations",
 enable users to move back (return to previous steps) or forward, work

continuously and step-by-step,
 there should be no big penalties for errors or mistakes and success should be

rewarded with meaningful response,

 there should be "immediate and useful feedback for one´s action",

 user should have sense of control over actions and processes,

 DT should support meaningful visualization of data and processes for better

understanding and exploring relationships and connections,

 enable explore various alternatives and solutions through 'what-if' scenarios and

simulations,

 provide access to large databases of resources and digital libraries to find

inspiration and gather knowledge,

 let users to disseminate their outcomes, products or artifacts to gain reputation

and broaden databases of accessible resources.

Programmable media [13] (which enable users to create animations, interactive

games, stories, simulations etc.) should let users customize their projects in an easy

way – change backgrounds, objects, choose from available libraries or make own

figures, scenes or pictures up to personal style and preferences.

2.3 Valuing creativity

"To Understand Is To Invent."

J. Piaget

If we want to think about the evaluation of creativity, first we need to answer the

raising questions concerning value and originality in creative efforts and results.

Beghetto & Kaufman [4] emphasize creativity as a dynamic process. They propose

that a creative process is more important than a creative product. Boden [7] assumes

http://slovnik.azet.sk/preklad/anglicko-slovensky/?q=accessible

that everyone is creative at some level. Rather than asking if the idea is creative, she

proposes to ask how creative the new idea or artifact is and in which way.

The NACCCE [5] proposes three different categories of originality: individual,

relative and historical. Historical originality is involved in Big-C creativity and such

outcomes are uniquely creative in the field. Relative originality is a part of little-c

creativity and produces outputs, which are original in relation to the classmates or to a

particular peer group. Mini-c creativity involves individual originality which

produces outcomes that are “original in relation to his or her own previous work”

[15].

In the school setting it is the little-c and mini-c creativity, which are most likely to

occur. The mini-c creativity is typical in a situation when pupils construct their

knowledge by themselves – in such situation it is very likely that new findings will be

original and meaningful for them. This type of creativity is the most important in the

learning process and a teacher should be aware of such efforts and reward them.

Moreover, the teacher should suggest normative standards, authorities and positive

role models in the field.

Runco [14] claims that the creative expression is often "personal and not easily

compared with normative standards". The results of the creative effort are novel or

original for classmates "but not in comparison with some larger norms". Hence

Runco recommend to focus attention on a creative potential "rather than

unambiguous creative performance" [14].

Nevertheless, it is important to encourage pupils in self-evaluation and critical

reflection on their own and others´ work. Craft et al. [15] present some thoughts on

how to judge creativity and to overcome the subjectivity of this judgment:

 “determine clear criteria for excellence” and requirements for the tasks,

 be flexible in the judging (be opened to various solutions even the surprising ones),

 get variety of evaluative methods (teacher's evaluation, peer review, self-

evaluation),

 failure in creative process should not be judged negatively.

3 What Do Teachers Think About Creativity in Informatics?

In this chapter we analyze the data gathered via several interviews with teachers.

Our goal is to identify core themes in this context and propose a definition of

creativity in informatics. For this purpose we chose a qualitative approach heavily

relying on grounded theory methodology (though at this point of research not all the

criteria are met and some strategies of the grounded theory have not been used yet).

Sampling - we combined several types of purposive sampling [16] and we chose

teachers from primary and secondary schools that we knew are active, innovative and

think critically about teaching and learning processes. For the future sampling an

exact method on how to choose those teachers is needed (e.g. a questionnaire that

would estimate their fit for our research).

Data collecting and preparation - with four participants we digitally recorded the

interviews and then transcribed them into digital text form. The interviews were

unstructured. We began with general questions about teaching and school life and

http://slovnik.azet.sk/preklad/anglicko-slovensky/?q=requirements

then we moderated the interview to creativity related topics. Other three participants

responded to seven open-ended questions via e-mail (e.g. Are there some lessons you

consider to be the creative ones? If so, how are they organized, what is the teacher's

role? Are they different form less creative lessons? Describe the activities the pupils

do.). Once we collected the data we printed and organized them by type (interview,

questionnaire responses).

Coding process - in first reading we explored the data looking for emerging

patterns and themes (this partially happened already by interviewing and

transcribing). Then we applied open coding and broke text into segments, labeling

each of them with code. By axial coding we refined the categories and looked for

more accurate relationships among them. The result is a detailed map which depicts

the categories and their relations (simplified version is in the Fig. 1.). We describe our

findings in the following chapters.

This research is not finished. We are aware that data has not been saturated yet (we

need to interview more teachers as well as enhance the methods on choosing them).

More detailed selective coding is needed to reduce the categories and their properties.

Only then we would be able to state the resulting theory on creativity in informatics.

There are also several emerging questions that are interesting to examine closer. We

plan to interview more teachers and reinterview the participants we already had and

ask them more specific questions.

Fig. 1. Map of main themes (categories) emerging around the creativity in informatics.

The main themes (categories) that represent creativity in informatics are:

 definition of creativity,

 characteristics of creative activities,

 role of the teacher in this process and it's connection to motivation and means of

supporting creativity,

 features of creative tools.

3.1 What is Creativity in Education and Informatics

We have identified five domains in which creativity is present in the context of

school informatics (and generally in education). Creativity means

 to have ideas - ability to come up with something new, different, original,

innovative and imaginative,

 to make things happen - to do more than the instructions asked for, to work

independently,

 to know how to use tools and knowledge acquired at school, to know how to

connect things together,

 to discover solutions, be able to find more than one solution,

 to react in different situations, to process various inputs.

As the most important the teachers marked the ability to creatively use the tools

which were a subject of the informatics education (usually they meant software

applications such as graphic editors but some also mentioned this in the context of

programming and by tool they meant some programming structure such as a loop).

All teachers implicitly spoke about 'little C' or 'mini C' creativity. They were aware

of the fact that their pupils usually did not come up with any revolutionary inventions.

They readily appreciated if children discovered something that is new only to

themselves or in the classroom environment.

Teachers also identified various aspects of creativity. They mentioned visual,

algorithmic and literary creativity. This categorization is not final since only some

teachers admitted that solving algorithmic problem might be creative. We suspect that

many teachers do not find programming to be the core topic in school informatics and

they focus much more on the user skills with various applications (editors).

Other classification of creativity regarded the creativity of a process and

creativity of a product. Again this topic is seen differently - some teachers observe

and appreciate both types of creativity, some of them endorse only the product, others

only the process. We plan to investigate more what the reason for this disagreement

is.

3.2 Creative Tools and Digital Technology

So far we have identified several features that are common for creative educational

tools (programming languages and environments, educational software, microworlds,

software applications, etc.):

 simplicity - tool must be easy to use and to get familiar with, complicated interface

restricts the creativity,

 wide walls - tool must have many possibilities and wide range of use,

 visual elements - this feature relates to motivation, teachers believe that children

like working with visual tools, it also links to the visual (or artistic) type of

creativity,

 interactivity - again interactivity is a feature popular with children and stimulates

their motivation and thus also creativity,

 orientation on the product - tool has to produce something (so the creativity of

product might appear), the product should be interesting, entertaining or useful.

3.3 Creative Activities

The teachers pointed out that any activity in the classroom has to meet the

educational objectives. Creative activities often jeopardize their fulfillment. A

teacher has to ensure educational objectives are met and this is often very difficult to

manage. They stated that creative activities are demanding and a teacher has to be

very flexible. However, during the activity the role of the teacher is minimized and

the focus is on the learner who works on his own. We assume that during such

creative activity a teacher 'teaches less' but the nature of this teaching is much more

demanding than during regular lessons.

The teachers often described improvised activities they prepare "only in their

head" due to lack of time or will to prepare them beforehand. Some teachers do this

on purpose and improvising is their modus operandi. Regardless of the reason these

activities are reported to be very successful. Teachers perceive them as creative (we

suspect this relates more to the teacher's creativity than to the learner's creativity).

The most important feature of a creative activity is its open-ended nature.

Teachers characterized it as

 without given output,

 proposing wide theme,

 the learner has freedom to choose (theme, solving strategy, methods, ...),

 has various solutions.

Examples of such activities:

 the child has to make up its own task ("make up your own") and solve it (e.g. to

make up their own picture a turtle should draw, or to make up a new function for

the project they programmed at previous lesson),

 the child adds a new feature to existing solution (e.g. to the program),

 multimedia projects (creating movies, clips, music videos, books, radio broadcast -

this activities often include writing a scenario, working with DT, using editing

software and teachers regard them as fairly difficult to finish).

Convergent activities are perceived as restricting the creativity - it can emerge

only in the process not in the product (since it is given in the instructions). Some

teachers do not recognize the process as creative and thus convergent activities are not

creative either.

3.4 Role of the Teacher

As hinted in previous section the role of the teacher is to manage the class.

Ensuring the educational objectives are met is important. Other positions involve

 giving ideas, stimuli and prompts,

 interacting with the learner - the teacher is flexible, is able to continue the lesson

in various directions, finds benefits in every situation that appears, he also helps

the learner if they go astray from the lesson objectives.

Stimulating Creativity

Most of the teachers admitted that they do not support creativity on purpose; it is

more of a by-product of other objectives. However, they were able to identify some

strategies for supporting creativity:

 give ideas and other extrinsic stimuli,

 conduct open-ended activities,

 give enough space for learner's ideas,

 do not restrict, only guide,

 recognize, appreciate and present learner's creativity.

None of the teachers had a strategy for grading creativity. They either did not know

how to evaluate it or did not even feel the need to evaluate it since creativity is not

their primary goal of education. Although they stated that recognition and

appreciation is needed to maintain the creative environment.

Creativity and Motivation

Motivation is understood as a crucial factor in the process of learning. Motivation

and creativity go hand in hand, they influence each other and they both enable a child

to learn new things. Most teachers identified the personality of the teacher himself as

a core factor for extrinsic motivation. They mentioned 'atmosphere' of the class

created by the teacher, group of learners, environment and 'school spirit'. This

atmosphere has to be favouring creativity to stimulate it.

The teachers recognize also an intrinsic motivation of children, but some think they

are not able to develop it and take it as a given property of the child. Others think they

can work also with intrinsic motivation by giving appropriate prompts.

Valuing Creativity

The teachers do not grade creativity - they do not consider creativity to be their

educational objective and therefore grading it is not their goal. They grade only the

correctness of the solution. Some of them recognize only the visual (artistic) creativity

and since they are not educated in this field they do not feel entitled to judge the

originality.

They were not able to word any methods how to value creativity, though they

stated they could recognize if a child is creative or not. They also emphasized that

creativity should be rewarded - verbally or by presenting before the class. They feel

that promoting creativity is important but they have no systematic methods to find out

if creativity is occurring in the classroom or not.

4 Conclusion

The data collected from the teachers show that their understanding of creativity is

similar to the theory we have learnt from literature. Even if literature heavily

recommends focusing on the creative process some teachers do not recognize this

process as part of creative performance and they value only the product. The teachers

defined creativity in informatics mostly as an ability to effectively use the (digital)

tools they mastered in the class, to discover solutions and to work on their own.

Teachers defined creative activities as open-ended, where pupils can modify the

instruction, choose theme or make up their own task. They also stated that work with

multimedia is creative.

The role of the teacher in the creative process is to facilitate creativity, provide

ideas and focus the activity on the pupils. These activities are perceived as more

demanding for the teachers because they need to react flexibly in unexpected

situations. Important in this process is motivation that supports creativity and vice

versa. Appreciating creativity and creating a creative atmosphere in the classroom is

equally important. Teachers do not have systematic methods to judge creativity and

do not feel entitled to do so.

Our early analysis opened several interesting question we haven't considered

before (e.g. what does it mean that some teachers do not recognize creative in the

process, why is creativity often limited only to the visual aspect, how should

creativity be valued in classroom). We plan to investigate them in greater detail and

look for possible explanations.

References

1. Resnick, M.: Sowing the Seeds for a More Creative Society. The Media Laboratory,

Massachusetts Institute of Technology (2007)

On-line: <http://web.media.mit.edu/~mres/papers/Learning-Leading-final.pdf>

2. Kusá, D. et al.: Zjavná a skrytá tvorivosť (Hidden and obvious creativity). Ústav

experimentálnej psychológie SAV, Slovak Academic Press, Bratislava (2006)

On-line: <http://www.psychologia.sav.sk/tvorivost.pdf>

3. Lassig, C. J.: Promoting creativity in education: from policy to practice: an Australian

perspective. In Proc. of the 7th ACM Conference on Creativity and Cognition: Everyday

Creativity, pp. 27--30. University of California, Berkeley, California (2009)

On-line: <http://eprints.qut.edu.au/28958/1/c28958.pdf>

4. Beghetto, R. A., Kaufman, J. C.: Toward a Broader Conception of Creativity: A Case for

“mini-c” Creativity. Psychology of Aesthetics, Creativity, and the Arts, Vol. 1, No. 2, p. 73-

-79. American Psychological Association, Washington (2007)

5. Department for Education and Employment (DfEE) All Our Futures: Creativity, Culture and

Education. DfEE, London (1999)

On-line: <http://www.creativitycultureeducation.org/data/files/naccce-all-our-futures-

249.pdf>

6. Banaji, S., Burn, A., Buckingham, D.: The Rhetorics of Creativity: A review of the

literature. Arts Council England, London (2006)

On-line: <http://www.creative-partnerships.com/data/files/rhetorics-of-creativity-12.pdf>

http://web.media.mit.edu/~mres/papers/Learning-Leading-final.pdf
http://web.media.mit.edu/~mres/papers/Learning-Leading-final.pdf
http://www.psychologia.sav.sk/tvorivost.pdf
http://eprints.qut.edu.au/28958/1/c28958.pdf
http://www.creativitycultureeducation.org/data/files/naccce-all-our-futures-249.pdf
http://www.creativitycultureeducation.org/data/files/naccce-all-our-futures-249.pdf
http://www.creative-partnerships.com/data/files/rhetorics-of-creativity-12.pdf

7. Boden, M.: The Creative Mind: Myths and Mechanisms (2nd ed.). Routledge, London

(2004)

8. Fasko, D.: Education and creativity. Creativity Research Journal, 13(3--4), p. 317--327.

Routledge, Philadelphia (2000)

9. Qualifications and Curriculum Authority (QCA): How can teachers promote creativity?

(1999). On-line:

<http://webarchive.nationalarchives.gov.uk/20100823130703/http://curriculum.qcda.gov.uk/

key-stages-1-and-2/learning-across-the-

curriculum/creativity/howcanteacherspromotecreativity/index.aspx>

10. Loveless, A. M.: Literature review in creativity, new technologies and learning. Futurelab

series, Report 4, School of education, University of Brighton (2002)

On-line:

<http://archive.futurelab.org.uk/resources/documents/lit_reviews/Creativity_Review.pdf>

11. Greene, S. L.: Characteristics of applications that support creativity. Communications of the

ACM, Vol. 45, No. 10 (October 2002), pp. 100--104. CACM, New York (2002)

12. Schneiderman, B.: Creativity support tools. Communications of the ACM, Vol. 45, Issue 10

(October 2002), pp. 116--120. CACM, New York (2002)

13. Monroy-Hernández, A., Resnick, M.: Empowering Kids to Create and Share Programmable

Media. In: interactions – Pencils before pixels: a primer in hand-generated sketching,

Magazine, Vol. 15 Issue 2 (2008)

14. Runco, M. A.: Education for Creative Potential. Scandinavian Journal of Educational

Research,Vol. 47, No. 3. Routledge (2003)

On-line: <http://www.coe.uga.edu/torrance/files/2010/08/Scandinavian_Journal.pdf>

15. Craft, A., Jeffrey, B., Leibling, M.: Creativity in Education. Continuum International

Publishing Group Ltd., London (2001)

16. Creswell, J. W.: Educational research: Planning, conducting, and evaluating quantitative and

qualitative research. Pearson Education, Upper Saddle River, New Jersey (2008)

http://webarchive.nationalarchives.gov.uk/20100823130703/http:/curriculum.qcda.gov.uk/key-stages-1-and-2/learning-across-the-curriculum/creativity/howcanteacherspromotecreativity/index.aspx
http://webarchive.nationalarchives.gov.uk/20100823130703/http:/curriculum.qcda.gov.uk/key-stages-1-and-2/learning-across-the-curriculum/creativity/howcanteacherspromotecreativity/index.aspx
http://webarchive.nationalarchives.gov.uk/20100823130703/http:/curriculum.qcda.gov.uk/key-stages-1-and-2/learning-across-the-curriculum/creativity/howcanteacherspromotecreativity/index.aspx
http://archive.futurelab.org.uk/resources/documents/lit_reviews/Creativity_Review.pdf
http://www.coe.uga.edu/torrance/files/2010/08/Scandinavian_Journal.pdf

Op Art or the Art of Object-Oriented Programming

Nikolina Nikolova
1

, Eliza Stefanova
1
, Evgenia Sendova

2

1

 Sofia University „St. Kl. Ohridski”, Faculty of Mathematics and Informatics,

5, James Bourchier Blvd.,

Sofia 1164, Bulgaria

{nnikolova, eliza}@fmi.uni-sofia.bg
2

 Institute of Mathematics and Informatics, Bulgarian Academy of Science,

Acad. G. Bontchev, Bl.8

Sofia 1113, Bulgaria

jenny@math.bas.bg

Abstract: The paper presents an application of the project-based approach,

supported by information and communication technologies (ICT), in the context

of informatics education. The experiment under consideration presents classes,

performed in parallel in two mathematics high schools in Sofia with 11 graders,

working on the topic of Op Art. This experiment is another implementation of

the findings of the Innovative Teacher European project (I*Teach), viz. that the

integration of ICT into the project-based learning approach can enhance the

students’ soft skills in accordance with the knowledge-based society

requirements. The ICT tools are used within the described experiment in three

directions: (i) as an integrated development environment (IDE); (ii) as tools

supporting education, and (iii) as tools for building a virtual environment for

communication and education. The goal of the experiment is to propose a

model, which could be applied in the future at secondary school informatics.

Furthermore, it demonstrates the authors’ strong belief that informatics should

not be reduced to learning how to program, but should rather be based on

learning by programming.

Keywords: project-based approach, ICT-enhanced skills, virtual learning

environment, integration of informatics and art

1 Introduction

The specialized classes in informatics are real challenge for teachers. There are

about 30 schools having such classes in Bulgaria, three of them – in Sofia. These

classes deal with advanced object-oriented programming. The curriculum is similar to

the curriculum for the first two years at the university. The students are prepared to

participate in national and international competitions in informatics and IT. This

means the learning content is quite heavy and sometimes – quite demotivating in

terms of content.

The main efforts of the teacher in these classes usually are focused on acquiring

some basic knowledge and skills in programming and data structures, as well as in
algorithmic thinking.

In practice, the training is often reduced to teaching the very language

constructions, usually by uniform examples, which are not meaningful for the

students. Our personal experience and what we have been sharing with teachers in

informatics strengthens our conviction that applying this widely used approach leads

to a lack of motivation and to superficial skills. In addition, those students who

continue their higher education in the area of computer science often comment later

that although they have studied hard in school, they either do not remember or just

could not apply anything of the material studied. In harmony with the

constructionists’ spirit we have been applying the credo learning by programming is

more important than learning to program in our practice in the frames of the

Research Group on Education (RGE) [1] and within educational materials influenced

by the RGE principles of integrating school subjects and learning by doing.
The project-based approach has also been successfully applied in a limited number

of schools that have adopted the Logo philosophy [2]. The approach however was not
spread on a large scale, due to the lack of time and appropriate environment for team
work during its application. The contemporary information and communication
technologies however enlarge the classroom in time and space thus providing new
opportunities for the project-based learning.

To introduce on a larger scale the effects of integrating knowledge from various

fields in the context of the project-based learning there was a need of examples

working in a real setting. We had several recent theorems of existence – a Data

structures and programming [3] at the Faculty of Mathematics and Informatics (Sofia

University), and teacher training courses within the Innovative Teacher Project

I*Teach.

The experience at university level presented in [4], however, is based on the fact,

that the most of the required knowledge is being presented to the students in the

traditional lecture style, while the project-based approach is only supplementary, as an

enhancement. The challenge for the secondary school teacher is bigger – to build all

the expected knowledge and skills in the context of the work on a project, within

relatively limited time.

Below we give an example how these complex aims have been achieved in a

school setting by applying the methodology of the Innovative teacher (I*Teach) [5],

developed in the frame of the Leonardo da Vinci project [6]. The specific

characteristics of the I*Teach methodology are:

- The learning process is driven by students’ interests.

- The students are faced with a challenge, which motivates them to participate

actively in the process of learning.
- The students work in teams on a project, whose goals they formulate

themselves.

- The road to the goal is a metaphor behind a specific educational scenario

(Figure. 1) with milestones of intermediate objectives. The teacher guides the

students to the ultimate project goal by interweaving his/her own pedagogical

goals concerning the learning content with the building of ICT-enhanced soft

skills.

Figure 1. Metaphors of an I*Teach scenario

Applying the I*Teach methodology turns out to be especially appropriate in

informatics education in secondary school by creating a platform for new forms of

interactions, a new class management and supporting activities contributing to the

development of the 21st century competencies. Here is a specific example.

2 The I*Teach methodology in action - the Op Art project

2.1 Context and methodology of research

The experiment started in parallel in two informatics classes of 11
th

 grade students

from two mathematical high schools, at the beginning of the 2010/2011 school year.

We started the classes with the clear idea for a project-based learning, which would

not only cover the curriculum-related requirements (as defined by the state standards),

but would also account for building the ICT-enhanced skills: working in a team,

working on a project, information, and presentation.

The teacher diary contains data collection, on the basis of which the phases of the

experiment are described below, together with some observations and conclusions.

Unstructured interviews have been used for getting feedback from the students.

The main goals of the specialized classes in informatics in 11
th

 grade in the

Bulgarian high schools are specified as follows: mastering skills and knowledge about

the syntax and the semantics of a programming language, algorithms and basic data

structures. The time determined for this is 108 academic hours (40 minutes each). The

students are expected to move from the procedure-oriented to the object-oriented style

of programming and to acquire the concepts of classes and objects, data

encapsulation, composition and inheritance.

Most of the informatics teachers in Bulgaria see the use of integrated development

environment for programming and runtime framework as the first and only possible

application of ICT in their practice. Right here, we see the first difference in our

experiment in which ICTs are applied in two additional directions: as a

supplementary tool of education and for building a virtual environment of education

and communication.

2.2. Training methods and a learning environment

During the first lesson we presented the methods of learning and teaching we

envisaged for the informatics classes to the students of both schools, viz. providing

various learning resources prepared by the teacher (the first author)– presentations on

different topics, notes on them, video materials; defining and collecting assignments

for class and homework; inquiry-based learning on given topics; projects

development in teams. Furthermore, we told them that all these activities would be

performed by active use of virtual environments for education and communication.

The immediate reaction of the pupils was: Are you trying to foist on us some

American system? This did not come as a surprise for us because till that moment they

were trained only in a traditional lecture-drill style.

In order to organize effectively our work, as we promised to the pupils, it was

necessary to build a teaching/learning virtual space (Figure. 2).

Figure 2. The virtual environments used in two parallel experiments

That problem was naturally solved in the first school, because the Moodle course

management system had been installed and the students already were familiar with it.

At the second school it was necessary to build virtual environment for education by

means of Web 2.0 technologies: Google groups for communication, YouTube for

sharing video materials, Google shared documents for collaborative work, common

internet space for storing resources, e-mail, Google forms for collecting feedback, etc.

2.3. The transition

We were aware that the students would need time to adjust to the project-based ICT

enhanced learning and teaching. That is why we started with two projects whose goal

was to cushion the effect of the transition. Each of the projects introduced new

requirements and responsibilities. While in the first project we expected the students

to do mainly research on a small scale, finalizing it by comparative analysis, in the

second one we asked them to continue the research and to develop their own software

application, modelling a mathematical object – geometrical figures, rational numbers,

etc. Both projects aimed at teaching the students to find information relevant to their

goals, to select and use appropriate tools for communication, to acquire skills for a

team work and to present their final product in front of the class. The students were

further encouraged during the work on the second project to use new techniques (not

studied till that moment), data structures or classes and methods to achieve the best

possible result. To foster their critical thinking, we required that they use peer- and

self-evaluation by means of assessment forms, developed and shared through Google

forms (Figure. 3)

Figure 3. Assessment forms and their summary in Google

As a result of the work on the first two projects, we observed increased motivation

and more responsible attitude on behalf of the students. In addition, all of them used

more actively the resources and the communication tools provided in the virtual

environments.

2.4. It’s a kind of magic

The work on the first two projects ensured the necessary preparation and the base

for the next project. It required not only students to be familiar with technological

environments, but also to carry out a very extensive study.

During its first phase the students, in teams of 2-3 members, had the task to make

an Internet-based study and to present the result on a topic among the following:

1. Vasarely (who, when, what);
2. Escher (who, when, what);
3. Op Art (art, artists, applied arts);
4. Optical illusion (types, techniques to be achieved, examples).
The formulation of the task surprised the pupils and comments followed:

– ʆooh, madam, enough with this obsession to teach us how to present!

– Is this some kind of a physics lesson?!

There were a lot of emotional comments during the study itself:

– ʆooh, I know him! He is a Dutch! Very cool! Let me show you the waterfall!

(enthusiastic exclamation about Escher by otherwise the weakest student in

the class)

One of the girls (good in informatics competitions) was very impressed by what

she found on the Internet and by the fact that a lecturer in informatics is interested in

arts as well: And I, myself, began to be interested in it too...
At the end of the presentations there was a total confusion about why they needed

these things. The students still did not know that the study and the presentation of the

results aimed at immersing them into the topic, at preparing them for the

implementation of the project. It was only at that moment when the theme of the

project was announced: It’s a kind of magic!

In one of the schools spontaneously three students sang the popular Queens’ song

with the same name, while other students were quite reserved:

– Now what is left is only to ask us to draw!

They were not so far from the truth. In the third project students were asked to

create Op Art images, programming them in Java language. More complex

requirements were put in front of them. Again, it was necessary to work in teams of 2-

3 pupils, expected to perform their own research and to have their own contribution,

but this time in a more professional way. The requirements included:

- A research of existing models and projects in Java, realizing Op Art images

- Development of a prototype of software application with interaction

- Preliminary study and listing of additional opportunities for programming

language which the individual teams will eventually need to realize their ideas

- Completing the overall project

- Presentation, including not only a demonstration, but an analysis of the team's

work in terms of their own contribution, problems encountered and solved in

the process of work, new matters studied in terms of programming concepts as

well as knowledge from other areas (mathematics, culture and arts etc.), social

and technical skills developed.

The teams had at their disposal two weeks for work on the project and one – to

prepare for the public presentation. During the classes in informatics the teams

presented the current status of the development of the project, as well as the problems,

for which they needed the teacher’s help. Most of the work on the project,

development itself, was done by the teams out of the regular classes, actively

communicating (mostly via e-mail) with each other. As for the teacher, she not only

was tracking the project, but also participated through directing and assisting students

with additional material, ideas and possible solutions to problems encountered by the

students. In addition, each team tried to surprise the other teams with an attractive

product.

The implementation started by choosing a model and development of the

application prototype. That task seemed easier to the students at the beginning. Most

of them selected a model from the Internet and decided to implement it. When getting

focused on the requirements to upgrade the model by adding interactivity, many of

the teams found that the chosen model, although easy to implement, is not an

appropriate basis, because it did not provide enough attractive options to upgrade and

add interactivity.

There were teams who approached the prototype after analysing the project

requirements. At a very early stage they had specific questions to the teacher

regarding the features of the language and the programming environment. In addition,

these teams reviewed the tools proposed by the teacher so as to decide whether they

could rationalize and implement them in the context of their own projects. Moreover,

they experimented with simple examples before making sure that their idea is

realizable.

Other teams showed their creativity by upgrading ready models and developing

their own Op Art models based on the fundamental elements of the pattern. A girls’

team was very happy to discover the bottom-up programming approach and to find

how easy it is to write methods realizing small similar parts of the figure and then to

use the same functions to assemble completely new, arts products of their own.

This project engaged the students emotionally much more strongly than the

previous two projects. Even the students, who traditionally would not rush to

program, were actively involved – a timid girl, who had not shown initiative until

then, participated now in the programming process and gave ideas at the same level

with her teammate – the best programmer in the class; other two students who did not

consider themselves “mathematicians” drew and calculated coordinates for translation

and rotation of objects (Figure. 4).

Figure 4. Working in teams on the project

There were also students who failed to organize themselves well. They

underestimated the project and began to panic at its end. Some teams were broken and

formed new ones. Other students with research spirit, devoted more time to doing

research and, while working referred to the papers of such mathematicians as Polya

and Poincare.

Overall the last two phases of the project ran very dynamically, even passionately.
Many questions and semi-successful experiments flew continuously, both in class and
by email. At the end the work flowed more quietly, the first results were already
visible, the students felt far more confident in their abilities. When the teacher made
an attempt to offer her vision to help a team, its captain exclaimed: Please, do not put
forward your solution! Please, help me to realize my idea! The team felt mature
enough to implement its own idea and expected to be supported by the teacher, not to
be lead by the hand.

The presentations of the projects were also intriguing. It turned out that only one

regular class is insufficient for all teams to present and defend their results. All teams

had invested a lot of effort and wanted to share everything new they had found while

working on the project – interesting facts and images, features of the language for

objects settings, new tools of interaction with users, methods of implementation of

animation, math functions and their application to the project. But most of all students

wanted to show the final result being a fruit of their own imagination!

On the other hand, being in the role of evaluators the students kept asking the

presenters about problems they themselves had come across, or effects they were

curious about. At the same time, they judged their peers very critically striving to

meet all the criteria for evaluation. The evaluation cards were filled in for each

project. By them the evaluators justified and argued any grade with concrete examples

from the observed presentation.

Some teams asked for time extension in order to improve their project, proposing

to take a lower score due to the extended time for work.

Other teams showed unexpectedly attractive results, achieved by independent work

at home. Some of them said that they had purposely kept their work in secret so as to

surprise the audience, while others shared that their attitude was inherited from

previous years: it was not cool to work in informatics classes!

In all cases, discussions in both schools continued even after the end of classes.

The presentations passed with many emotions, involvement of students, exchange of

ideas and projects. Some teams decided to continue the development of their projects,

even if they had already received excellent marks and evaluation.

In both schools the project results (Figure. 5) were published at the virtual learning

environment thus becoming accessible to all. The principal of one of the schools

offered to publish the projects on the school’s web site to make the students' real

achievements visible to a wider public.

Figure 5. Visible results from the students’ work on the project

2.5. Reflection

The project-based learning still puts lots of challenges in front of the teacher.

Before the start of the project she carefully selected the core content to present to

the students, so that it would be sufficient as a starting point for the projects. In this

case the curriculum requires to introduce the object-oriented programming concepts –

the class, the objects, constructors, access modifiers, method call, data hiding

concept, controlled setting and getting private variables’ values. The teacher chose to

present these concepts on the base of the JPanel class as a drawing canvas and to

demonstrate object’s properties and ways to manipulate them through very simple

geometrical forms (squares, arcs and ovals). She explored with the students the

colours’ and strikes’ transformations introducing to them the idea of inheritance.

During the implementation of the It’s a kind of magic project, the teacher had to

follow in parallel the threads of the mental road-maps of all the teams; to experience

their successes and problems; to seek together with them solutions of questions,

sometimes new even for her. She had to invest much more time for preparing the next

lesson because she wouldn’t know in advance what her students would need.

This extra involvement was completely justified by the results and the added value

of this kind of education. Some students discovered new (for them) algorithms,

mathematical patterns and relationships, programming approaches and techniques.

Others were familiarized with the concepts of containers, basic and inherited classes,

manipulating threads, etc. Most importantly – all of them were happy to share their

findings, to learn from the experience of others, to get a realistic picture about what

they had learned while working on the project.

On the other hand, the fact that there were some students who were not so active,

or tried to present a development which was not their own, means that there is a need

of more strict control on the achievement of an intermediate result. Furthermore, the

time for presentation of the final result should be extended so as to provide the

opportunity for more questions about specific points in the source code as well as to

allow students to edit the program in place.

The students' reflections were very encouraging for us since they showed their

enthusiasm to continue to work in the same way:

– It was the most difficult program I’ve ever written! It works! It’s mine!

– Madam, I had a dream that I’m writing a software dictionary for my sister.

I’ve never thought I would be able to do this, but now… I believe that with a

little help…

– What is our next project about? Please, promise it will be at least as

interesting as this one!

It was interesting for us to see books on computer models of three dimensional

optical illusions brought by the students in the school a month after the project was

over as well as the exchange of pictures and ideas how to program them in Facebook!

Sharing our experience and the process of work during the experiment, we would

like to point out, that all elements (methods as well as ICTs, although different in both

cases) play important role for the final results. In the same time, we are fully aware

that what could happen in each specific class setting to a great extend depends on the

will, the enthusiasm, the skills and the courage of the teacher.

Since the design and the class management of such a type of education are rather

difficult tasks, the culture of making them a natural school atmosphere should be

promoted at the university level – during the pre-service and in-service teacher

education alike. The results will justify the efforts.

3 Conclusions

The work on the project Op Art (as a kind of magic) was not just an attempt for Art

programming, but rather entering the art of learning and teaching Object-oriented

programming by means of the present Information and communication technologies.

It was an authentic challenge for the students and for their teacher with real, strong

and visible results.

The education of the 21
st
 century highlights skills and competences for formulating

open problems, for seeking their solution: original, creative, innovative, required by

any employer, could be built, only if the education is not limited to the second, in the

best case, to the third level of the taxonomy of Bloom [7], but puts real challenges in

front of students and provides them with the relevant tools. For a design of such

education, it is necessary for the teachers to set goals going beyond the narrow subject

area. If we take the gauntlet thrown down by the art project we could better visualise

our educational message (Figure 6).

Figure 6. The natural Op Art transport of the education to the future

In other words, the education could advance to the 21st century by riding the

vehicle of the interdisciplinary project-based learning with ICT-enhanced skills.

References

1. Sendova, E. (2011) Assisting the art of discovery at school age – a Bulgarian experience,

in Talent Development Around the World, http://worldtalent.fundeta.org/libros/ebooks.php
2. Dicheva, D., Nikolov R., Sendova, E. (1997) School informatics in Logo style: a textbook

facing the new challenges of the Bulgarian informatics curriculum, in M. Turcsanyi-Szabo
(Ed.) Learning and Exploring with Logo , Proceedings of the Sixth European Logo
Conference Eurologo'97, Budapest, Hungary, 20-23 August, 1997, pp. 234-239

3. Todorova M., Hristov H., Stefanova E., Nikolova N. (2010) How to build up

contemporary software professionals - Project-Based Learning in Data Structure and

Programming, In proceeding of S3T conference, Varna, Bulgaria, 11-12 September 2010,

pp.47-54

4. Todorova M., Hristov H., Stefanova E., Nikolova N., Kovatcheva E. (2010), Innovative

Experience in Undergraduate Education of Software Professionals: Project-based learning

in Data Structure and Programming, In proceeding of International Conference of

Education, Research and Innovation (ICERI’2010), Madrid, Spain, 15-17 November 2010,

pp 005141 – 005150, ISBN: 978-84-614-2439-9

5. Stefanova E., Sendova E., v. Diepen N., Forcheri P., Dodero G., Miranowicz M., Brut M.,

et al Innovative Teacher - Methodological Handbook on ICT-enhanced skills, Faleza-

Office 2000, Sofia, 2007

6. Innovative teacher (I*Teach) project web site, http://i-teach.fmi.uni-sofia.bg

7. Bloom, B., Englehart, M. Furst, E., Hill, W., & Krathwohl, D. (1956). Taxonomy of

educational objectives: The classification of educational goals. Handbook I: Cognitive

domain. New York, Toronto: Longmans, Green

http://i-teach.fmi.uni-sofia.bg/

The Digital Book in ICT – the New Tool into Learning

and Teaching Process in the Primary School

Rumyana Papancheva1 and Krasimira Dimitrova1,

1 University "Prof. Dr Asen Zlatarov", Prof. Yakimov Bul. 1, Burgas 8000, Bulgaria,

rumi@parallel.bas.bg, itlearning@hotmail.com

Abstract. The paper describes basic goal, principles and approaches in creating

student's digital textbook for learning ICT in the Primary School. Some

examples of developed E-book "ITI" for 3rd and 4th grade in Bulgarian school

are presented.

Keywords: ICT, teaching, interdisciplinary, project-based learning.

1 Introduction

The students in Bulgaria from grades one to four study ICT as facultative classes.

During last years, more and more schools started to offer such classes. The main

obstacle that stops the acceleration of this process is the lack of qualified staff.

Primary school teachers have to teach ICT together with all other subjects. They don't

feel confident in their knowledge and skills concerning computers.

Another serious problem in teaching and learning ICT at Primary school is the lack

of facilities needed at school. Usually there are one to three computer labs with 10 to

15 computers inside. All labs are almost permanently occupied by 5th to 12th grade

students that study ICT as compulsory subject. Primary school teachers have limited

access to these labs and usually only for ICT classes. To integrate technologies during

regular lessons in Math or Science, for example, the teacher relies on his/her personal

laptop and some projector at the classroom and on some mobile laptops if they are

available at the school. In this way the independent students' work at home, where

most of the children have computers, is of great importance.

Good solution for these two problems is the digital textbook in ICT. A teacher with

average level of digital skills could use the book to show and explain certain

algorithms. A student could work individually at home or at school with minimal

adult's assistance. The electronic textbook is a new learning tool, offering wide

variety of options of interaction with students and to overcome many restrictions of

the regular textbook on paper.

mailto:rumi@parallel.bas.bg
mailto:itlearning@hotmail.com

2 Main Principles and Approaches in Developing Digital Book in

ICT

The electronic textbook is new challenge to the pedagogical community. It offers

advanced tools that give to it an indisputable advantage over well known teaching

resources like textbooks, workbooks, posters, worksheets and so on. At the same time,

its development should follow the contemporary pedagogical theories.

2.1 Didactic Principles of Creating Digital Book in ICT

Some of the key principles that should underpin the development of an electronic

textbook are listed here.

Individuality. The nature of the material studied and its peculiarities lead that

individualization and differentiation of the learning process in ICT have to be

realized. The implementation of this principle is determined by the specific of the

learning tasks where the tempo is determined by the level of each student.

Furthermore, by means of electronic communication the teacher has the opportunity

to work at different level with each of his/her students. The digital book should be

designed for personal use with personally formulated instructions and individual sets

of exercises for every student.

Systematic. The systematic principle is determined by C. Bespalko as a

fundamental requirement in establishing some educational model [2]. Its essence

consists in the necessity that new knowledge and concepts formed from the students

have to take their logical place into the system of knowledge already created. The

digital form of presentation of the content allow that the material to be systematized

in different levels, appropriate for beginners and students at intermediate or advanced

digital skills. The establishment of these levels of complexity is based on prior

estimation of the experience of groups of students.

Visibility. The visibility is crucial for this age interval (6 – 11 years old students),

which is related to the nature of the mental processes. The visibility is defined as

"enrichment and expansion of the sensory experience of students, in clarifying their

ideas and sensory development of observation"[1]. The computer could be perfect

tool for identifying the properties and the dependencies between objects into the

space. It is the most powerful visual tool to study objects and events – static and

dynamic. The opportunity pupils to use computers in their work, both in ICT and in

other subjects increase their motivation and the quality of training. With proper use

of the capabilities of the computers, the teacher could visualize highly complex

processes, phenomena and objects.

At this age, it is better for the students to watch how to do something and to repeat,

than just to listen given explanations. The demonstrations included into one digital

book lead to higher level of understanding. The digital book offers rich opportunities

for visualizing series of actions in applying certain algorithm – by pictures, by video,

be schemes.

Problem-based learning. Most valuable is the knowledge acquired through

personal learning experiences. Working on given topic and doing self research should

be key points in many of the tasks formulated. Variety of research themes could be

provided with an initial set of resources – implemented as galleries and hyperlinks

into the digital book.

Consciousness and activity. The principles relate primarily to the motivation for

active participation into the learning process. Higher motivation could be achieved by

involving children in activities such as: research, monitoring, classifying, problem

solving, practical activities, work on thematic projects. In general, students like to use

variety of digital devices, in particular – the computer. Higher motivation for work at

school is noticed when contemporary technologies are used.

Consistency with the capabilities of the children. It is or great importance to

achieve agreement between the curriculum and the students' abilities. According

Vygotsky, training should be directed to the nearest area of the development. The

content in one digital book should follow the rules formulated by Comenius: from

easy to difficult; From known to unknown; From simple to complex; From near to

distant.

All principles proposed here have to be used in unity.

2.2 Didactic Approaches in Creating Digital Book in ICT

Leading ideas in the development of an electronic textbook in ICT should correspond

to some key approaches, listed here:

Algorithmic approach. There are many formulations of the algorithmic approach

into the learning process [3]. The formation of algorithmic culture and development

of algorithmic thinking are the main teaching objectives of school education in

Informatics. Some methodical studies show the effectiveness of forming of

algorithmic thinking skills in early age [4].

The digital textbook offers different ways in introducing algorithms. Appropriate

system of hyperlinks helps students in actualization and knowledge summarization.

Activity and Personality. The approach of the active position of the student and

the personal-oriented approach are two of the most important. Nowadays there is a

new level of interaction between them – personality-oriented approach dominates in

order the individuality of the student to be form. This approach determines the

direction of the progress of the education system – the child is in the center of

learning process, with its needs and desires. From subject of training, he/she becomes

an active creator of his/her knowledge (subject-subjective system).

Depending on personal capabilities, each child works with an individual speed. In

this way a differentiation of the training process is obtained. Working with personal

digital book, the students who have higher interests in informational technologies

could go ahead and do more complex work. Students with fewer opportunities would

not be embarrassed by their inability. Even working slowly they will acquire the

minimum volume of knowledge.

Real individualization of learning process could be achieved in wide aspects –

from working with talented students to working with students with some disabilities.

The digital book allows child to be placed in the center of its educational process

by enabling him/her to make choices – which software to use, which exercise to

complete, tools to implement and so on.

Integrative approach. The integrative approach is used to support learning and to

overcome some failings of the subject-based training, which is defined as

reproductive. According to educational standards the integrative approach is

implemented by internal and interdisciplinary connections.

This approach should be used actively in creating content. In electronic form

students could solve problems from different areas of knowledge – from text language

exercised, to solving math word problems and so on.

2 E-Book "ITI"

Taking into account all main principals and approaches, described above, the authors

with their team, have developed a complete system for teaching and learning ICT into

Bulgarian Primary school [5, 6, 7, 8]. Within this system a digital book for 3rd and

4th grade students, named "E-book ITI" was created.

ITI is part of the educational package – paper-textbook, teachers guide for the

teacher and educational software distributed on CD. The main goal was to create an

electronic book to help the process of teaching ICT and/or integrating ICT into the

learning process.

The E-book "ITI" was designed in two parts – E-Practice and E-Guide.

E-practice is a set of electronic exercises. During installation process a personal

folder for the student is created with all learning resources in it. To work with the

exercises, the student has to follow the instructions included into E-guide module.

Fig. 1. Page from ITI-4 E-book. The lesson deals with layout of pictures towards the text.

Besides clear and precise instructions for working with the exercises, the E-guide

module includes many video-demonstrations, algorithms and samples given. Figure 1

shows a page from the 4th grade book in ICT. There are some basic elements on the

interface realized:

 Instructions for the student. The list contains short clear tasks that student has to do

in the order given;

 Information about the files, containing the particular digital exercises;

 Demo – created by video capturing of the screen that shows the key actions to do;

 Visual presentation of the start and end point of the task;

 Navigation to next and previous tasks.

In some lessons there are additional elements like hyperlinks, dictionary, i.e.

The main menu of the book is designed by pictures corresponding with the lesson.

On Figure 2, we could see the first screen as a pointer to different units.

Fig. 2. Main "Table of content" page of ITI-3 E-book. This picture-based menu leads the

student to the corresponding theme.

All basic interface elements used into ITI E-book are represented with constant

graphical signs. In this way students feel confident within the environment. After

some classes they could orient independently between demonstrations, dictionary

(English – Bulgarian) sections, information about the files, algorithms, instructions,

i.e. On Figure 3 we could see some of examples.

Fig. 3. Basic elements in ITI-3 E-book, providing interactive interface with the students

The content of the course in ICT for the third grade students is structured in some

main parts, shortly listed here:

 Computer system. File system – work with files and folders. Save and Open

commands. Start menu.

 Working with text. Text selection. Formatting – style and font. Copy and paste

commands. Printing. MS Office Word based work.

 Working with graphics. New instruments like color picker, color edition, selection,

copy and paste command. Paint.

 Combination of text with graphics.

 Picture processing. Working with Photo Story.

 Importing pictures and sound into presentation. MS Office PowerPoint based work.

 Work with animation. Creating animation by Gif Animator.

 Internet based work.

 Let's consider one of the modules – text selection. The digital book includes:

 PowerPoint presentation, illustrating the idea of the new activity – the text

selection. One needs to select the text to point out the target for the next operation.

Some parallels with selections already familiar to children are made. On Figure 4

we could see route selection within the forest, selection of trees to be cut down,

animal selection.

Fig. 4. The concept of Selection.

 E-Guide module with short, clear instructions for students, together with

demonstrations and information for algorithms and tasks proposed.

 E-practice module, containing pre-created digital exercises. For example, to

acquire skills for row (line) selection students have to color rows into Word

document to create different international flags (Figure 5a) or to format well

known poem coloring rows in different colors (Figure 5b).

E-practice module includes variety of exercises. One of the main goals is the

realization of interdisciplinary connections. The digital exercises, from content point

of view, play important role for systemizing and summarizing students' knowledge

from different school subjects. Students have to solve math problems working with

text formatting, or recall some facts from science and history.

a) b)

Fig. 5. Exercise examples from E-practice module.

The experimental work and the training already realized into the practice, give us

the ground to conclude that the use of electronic textbooks is effective and produces

positive results. Its introduction into the teaching and learning of ICT is a natural

extension of the tendencies for the digitalization of schools worldwide.

References

1. Andreev, M. The Process of Learning. Didactics, Sofia University Press, Sofia, 1996.

2. Bespalko, V., The Basis of the Theory of the Pedagogical Systems, Narodna Prosveta, Sofia,

1982.

3. Dimitrova, K, R. Papancheva, N. Kaloyanova, The Algorithmic Approach in Learning to

work with Internet, Sofia University Press, 2004.

4. KOLCZYK, E., Algorithm – Fundamental Concept in Preparing Informatics Teachers.

Springer Berlin / Heidelberg, Volume 5090, pp. 265-271, 2008.

5. Manev, K, R. Papancheva, K. Dimitrova, Informational Technologies for 1. grade, Izkustva,

Sofia, 2008.

6. Manev, K, R. Papancheva, K. Dimitrova, Informational Technologies for 2. grade, Izkustva,

Sofia, 2008.

7. Manev, K, R. Papancheva, K. Dimitrova, Informational Technologies for 3. grade, Izkustva,

Sofia, 2009.

8. Manev, K, R. Papancheva, K. Dimitrova, Informational Technologies for 4. grade, Izkustva,

Sofia, 2009.

Art, Literature, and Turtles

Artemis Papert
1
, Brian Silverman2

1
 Independent artist, Montreal, Quebec, Canada

artemis@turtleart.org
2
 Playful Invention Company. Montreal, Quebec, Canada

Abstract. In this paper we discuss the need to move beyond computer literacy to

computer fluency. We describe TurtleArt, a microworld for creating art through

programming. We feel that TurtleArt encourages fluency by providing an easy to

learn programming environment coupled with a vocabulary well adapted to deep

and varied artistic explorations.

Keywords: TurtleArt, LOGO, turtle geometry, constructionism, programming,

art, microworld, fluency.

Knowledge is a polite word for dead but not buried imagination.
e.e. cummings

1 Literacy and Fluency

When computers first started appearing in schools in the 1980’s a lot of attention was

paid to computer literacy. Less attention was paid to fluency. Being literate in a

language means having an understanding of the syntax and semantics of that language.

It also means having some comfort with its vocabulary. Fluency is the ability to use the

language for the creation and appreciation of substantive works.

We would have hoped that by twenty years later fluency would have replaced

literacy as a goal and that we would be seeing more substantive works using

technological materials. True, various programmes have provided an opportunity for

children to understand and use, for example, spreadsheets and word processing, even

programming. However the works tend to be a new media form of the kind of

presentations that children have always done in school or simple games and

simulations.

In the hope of encouraging a more fluent use of technology we built a system we

call TurtleArt. Our goal is to provide an opportunity to engage in deep exploration and

produce substantive works. TurtleArt is about art. It is a system that is relatively

unsophisticated on the technological front and that is quite narrow in terms of the kind

of artefacts that can be produced. TurtleArt is focused on creating static images. It is

not a general programming environment or a system for exploring math, language,

science, etc.

2 TurtleArt

TurtleArt is a microworld for creating art. It is inspired by Turtle Geometry as descried

by Seymour Papert [1]. It is closer in spirit to the early versions of the LOGO

programming language than to the more modern constructionist environments.

TurtleArt’s language is blocks based rather than text based. Programmes are

constructed by snapping together puzzle shaped blocks (Fig. 1).

Fig. 1. The mechanics of TurtleArt are very simple.

The vocabulary is very small as compared to other versions of LOGO (Fig. 2). We

have left out words, lists, and data manipulation. The colour model, on the other hand,

is, unsurprisingly, sophisticated –it loosely resembles the P. O. Runge’s farbkugel [2].

In creating our images we try to keep the code very concise. We do this because we

believe that the code being elegant is an art form in itself. We also think that it is a way

to allow most of the images to be used as introductory examples [3].

In our images we have been exploring the interplay between algorithm, randomness

and direct choice (Fig. 3). Producing images programmatically is ideal for this kind of

work. Images usually evolve from an initial idea through stages of refinement and

often variants are traded between us as part of this evolution [4].

Fig. 2 The entire vocabulary of TurtleArt.

Fig. 3. The art is in the art.

3 A Little Bit of Programming Goes a Long Way

One of the design principles suggested by Resnick and Silverman is that “a little bit of

programming goes a long way” [5]. The design of TurtleArt takes this principle

seriously. More seriously, we think, than most constructionist environments. There is

little reason in TurtleArt to do more than a little bit of programming. We see this as a

strength, not a limitation. We recognise as a disadvantage that this makes the “walls”

narrow [5]. It may also make the “ceiling” lower. However, while it is true that in

TurtleArt you can hit your head against a programming ceiling, we find that, at least

for ourselves, the artistic ceiling is very high. Even after a couple of years of intensive

work our artistic exploration continues to broaden and to deepen.

In his book Mindstorms [6] Seymour Papert described Turtle Geometry as a

microworld and predicted that in the future there would be dozens of other

microworlds. We see TurtleArt as a microwold in the sense Papert intended. It is not

the only one that has been created since Mindstorms. However much of the

constructionist software that exists can be described as “microworlds for making

microworlds”, i.e. for learning a programming language. This has led to a situation

where, to paraphrase Marvin Minsky, we have “languages without much literature”.

We believe that TurtleArt has a literature. The images are the literature [4]. The

language only exists in order to support that literature. We have kept the language “as

simple as possible, maybe even simpler” [5]. With this we hope that fluency is a short

distance from literacy.

References

1. Papert, S.: Teaching children thinking. Artificial Intelligence Memo No 247 / Logo Memo

Artificial Intelligence Lab, MIT, Cambridge (1971)

2. Schopenhauer, A., Runge, P.O.: On Vision and Colors and Color Sphere. Princeton

Architectural Press (2010)

3. Getting Started with TurtleArt. http://www.turtleart.org/programming

4. TurtleArt Gallery. http://www.turtleart.org/gallery

5. Resnick, M., Silverman, B.: Some Reflections on Designing Construction Kits for Kids.

Proceedings of Interaction Design and Children conference, Boulder, CO., USA (2005)

6. Papert, S.: Mindstorms. Basic Books (1982)

http://www.turtleart.org/programming
http://www.turtleart.org/gallery

Ten Years of Creative Robotics Contests

Pavel Petrovič

Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics,

Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia, ppetrovic@acm.org

Abstract. Educational Robotics is a new field that did not win the position it
deserves in the educational systems yet. We look at its role from a natural view,
provide some didactic arguments and concentrate at robotics contests. We focus
on one type of robotics contest that is not very common – creative robotics
contest. We have been organizing it in Slovakia for ten years and wish to share
our views and opinions with a wider community.
Keywords: educational robotics, contests, creativity, virtual games.

1 Introduction

Learning to be creative, self-motivated, goal-minded, and capable of effective and
efficient gathering, organization and application of information should be among the
highest-priority goals of the contemporary schools. Regardless of how natural these
capabilities might be for a human being, they can easily be left undeveloped when
youngsters are growing up in a non-stimulating environment, an environment lacking
challenges, interactions, opportunities, and stimuli. A highly hierarchical, structural
and very advanced organization of the society we live in can easily become
demotivating, boring, or even frustrating for young people. Creating smaller or larger
isolated worlds on its own with rules and facts that are comprehendible and contain
goals and challenges to be achieved by systematic efforts can be among the best
possible scenarios to stimulate creativity, self-motivation, goal-mindedness, and
information processing. Let us call these “worlds” virtual games. Participants of
virtual games can be individuals or cooperating groups, teams. Finding ways of
effective inclusion of virtual games into educational process is a key to its success.

In the context of information processing skills, and other contexts as well, let us
underline that it must be recognized how centrally placed virtual games are to the
informatics education even when they do not relate to informatics, computers, or
algorithms directly. They typically require planning, role assignment, scheduling, task
distribution, progress reporting, logging, evaluation and presentation of information
and results. Many of these are important elements of thinking about and dealing with
information. Having them established in one’s mind before attempting to understand
and acquire specific concepts and skills corresponds to building a bridge instead of
trying to jump over a wide river. The second approach often results in sinking and
drowning. And we have witnessed this fate in various attempts. For instance, when
trying to integrate computer programming into standard curriculum. In those cases,

2 Pavel Petrovič

the mental substrate – the foundations to be built on were simply not there. Every
attempt resulted in a collapsed structure, falling down to the river, passing away and
leaving no traces. How harmful this has been to our field!

Starting with virtual games that do not directly relate to “computer science” might
also be a very suitable way of connecting the children’s interest and buying them into
the course framework. Once they feel comfortable, further informatics concepts may
slowly be integrated into the scenarios they experience. In this way, we may achieve
popularity and passion of informatics courses among the children from the very
beginning and further on. In fact, we believe this is the only way that works and it is
also what we are trying to do. Provide entertaining activities that ignite the interest
and generate self-motivation. We live in a society, where education-by-force does not
work any more. That era has passed! We live in a society that should be labeled
education-by-motivation. And even though the idea has always been there, it has only
recently become possible and it is now flowing into the main stream.

Setting up virtual games demands immense amount of work to be performed when
realized by every teacher separately. Sharing and common organization seem to be an
implicit requirement. Shared scenarios imply or at least provide for a social aspect
among the participating groups or classes. These common activities may involve
meetings, shared presentations, and awards. They can take form of independent or
interconnected challenges – a virtual game for one class or a team, or a competition of
multiple individuals, teams or classes. We believe, competitions are an excellent
example of virtual games. They are a very potent bridge building activity. Bridges
between different parts of knowledge, reasons, arguments, beliefs, facts, constraints,
positions, activities, dependencies, sequences, etc. are inevitable for learning. We
think that the real contribution of competitions to the educational progress of an
individual is more substantial than it is generally believed. We think that they deserve
more attention. However, we have to be careful here, and not to organize a
competition just for the sake of it. There are various kinds of competitions, and we
will elaborate on this idea further below.

In the remaining sections, we will discuss the role of the competitions, the role of
robotics in informatics education, and provide a short overview of robotics contests.
We describe our creative robotics contests, which are the main focus of the article. In
the later sections, we describe how we support the teachers in the educational robotics
activities, evaluate the outcomes of our efforts, and finally conclude with a few
remarks on the future.

2 Competitions

In this and our previous work [1], we have learned about the key characteristics of the
competitions:

Competitions have a fixed deadline that cannot be moved in any circumstances.
This provides a learning experience of a hard constraint. In order to succeed, pupils
must learn to work well with time, set their priorities, and weigh their decisions based
on the finite resource they are dealing with. The deadline also works as a strong

Ten Years of Creative Robotics Contests 3

motivating factor and helps pupils to learn to perform time-efficient work, and to deal
with stress.

Successful competitions are prepared by experienced individuals who are able to
asses the difficulty of the task specification and select tasks that are neither too hard
nor too simple. Pupils that participate in the competition can usually support their
thinking by the assumption that the task is solvable. The task is defined in very clear
and graspable language. The task specification defines a small world of its own as we
described above. The competition organizers also make sure their task is novel, and
the solution cannot be tricked by searching for it on the Internet.

Competitions are organized around standardized platforms. Participants know in
advance what they can expect, what tools and skills will be required to take part in the
contest. Large user communities form around standardized platforms, online forums,
manuals, tutorials, and example projects help the participants to get started, and keep
a steady progress without running into a wall and being blocked on an issue that could
not be resolved for weeks.

Competitions allow the schools and teams to attract the media and sponsors’
attention. They are also a good opportunity to persuade the school administration to
provide the best practice space, time, and human resource conditions to the team in
order to maximize the chances the participants win an award, helping the school
image. It is also a useful opportunity for the teacher to let other students in the school
know about the activities and inspire them to join in.

A very important aspect is the one of relating the children’s performance against
their peers. Young people are permanently and intensively trying to determine and
learn about their role in the society. Talented students need to learn about their
endowments and build upon them. At the same time, this aspect also poses a high risk
of disappointment, and it can result in loss of interest, unpleasant attitudes, loss of
performance and other complications. Team leaders must be prepared to deal with the
situation in advance, and balance the motivation of the team for the contest with the
interest for the subject and activity itself, find different ways to reward the team
members for their performance unrelated to the position in the contest.

Competitions are social events. Schools are social institutions, but nothing is more
mind-numbing than a daily stereotype in a master-slave configuration of a classroom
education. Pupils meet and interact with wider population and its ideas. They
exchange experience, learn from each other, and learn to act on their own in a novel
situation when asked for a certain type of performance, different from a daily routine.

Competitions emphasize friendly and fair-play atmosphere, they carry the good
spirit and create an island of time when everything and everybody is subordinated to
a good outcome, result, and feeling of every single individual. Experiencing this
atmosphere helps vitally later in the life when a participant faces difficult team or
individual challenges.

4 Pavel Petrovič

3 Educational Robotics

The idea of using robots in the educational process is not new, but it may still appear
surprising, disturbing or useless at the first sight to many of us. Let us explain why the
contrary is true and why it is so natural and inevitable process.

One of the distinguishing features of a human being is the capability to use
instruments and tools. Humans were getting involved in a social transfer of
knowledge from the earliest time. Young people can handle a much steeper learning
curve and thus an establishment of a school as a form of a social gathering of
youngsters with the purpose to learn from the more experienced is among the most
natural acts of our species. And from the earliest times, tools were used in this process
– chalk, stone or a blackboard, abacus, rulers, pencils, books. These all are tools. In
every age period, the learning tasks would always be supported by the technology that
is available, accessible, and can automate or in any other way support the learning and
teaching process: mechanical drawing boards, erasers, calculators, computers with
word processors, spreadsheets, mathematical programs, and educational software. In
the very same manner, it is just natural to use robots, for instance, to deliver items
from place to place in the school; clean the floor, or other surfaces; provide guidance
to school visitors; monitor and patrol the environment; help in the kitchen and dining
room; perform simple office tasks – copying, stapling, stamping, etc.; operate,
control, or measure experiments on chemistry, physics, or biology; throw or collect
balls in various sport activities for the purpose of training, or make measurements, or
otherwise assist in the physical education activities; explain or demonstrate a
particular material to the students by letting them or the teacher operate it or even
program it; be part of a student project assignment, allowing the students to extend
their range of experimental scenarios.

All of the above are reasonable uses of robots in the school, even though some of
them are less frequent yet. There is no separation between the “traditional” teachers
who should not be involved with the robots and “weird modern folks” who should be
dealing with them. Robots are here and they are entering the school in the same way
as the stylus did thousands of years ago in the ancient Egypt or Greece. Robots are
greeting every teacher or employee of the school alike, they are for them all.

The last four items in our list describe roles when robots actively participate in the
educational process. A common term Educational Robotics is sometimes used to
identify them. To this end, various systems have been put at the market or constructed
in the research laboratories. Among others,
• small wheeled mobile robots, programmable to certain degree, can be used to

teach basic elements of control theory, mechanics, electronics, and some
programming, these robots typically have a well-defined and limited range of
possible applications;

• robot arms and manipulators, can be used to setup various kinds of experiments
that involve manipulation, they are typically single-purpose devices;

• dedicated automated or robotic systems that are assembled for a particular
purpose, can demonstrate or assist a single type or a limited set of experiments;

Ten Years of Creative Robotics Contests 5

• users can chose to build their own robot systems from raw parts and materials, if
only they are equipped with the required skills, background, and resources;

• versatile construction sets with programmable control units that can be used for
various purposes, in most cases to learn about control and programming, and to
provide a platform for exploratory student projects.

All of the listed approaches work well for their purpose, although the most popular
certainly is the last item of the list. Among the reasons are: “many in one” solution,
accessible price, large community support, availability. Most efforts in the field of
Educational Robotics focus on working with the construction sets. The success of
their utilization lies in their open-ended nature, supporting the activities based on
Constructionists’ approaches. Together with the self-assembled robots, robotic sets
are the most often used and most suitable platform for the robotics competitions.

4 Overview of Robotics Contests

One could try to successfully argue that events as robotics competitions are in a
very corner of any decent educational program or process, unless considering the
specialized students in tertiary education program who study robotics, control
engineering, or artificial intelligence. Admittedly, there are no particular reasons why
robotics would be taught at primary or secondary level. In fact, participants of most
robotics competitions are hobbyist individuals, or teams from clubs or free-time
centers. Some of the schools, where robots are used to teach programming, may be
interested in setting up a school team; however, that still requires a heroic sacrifice of
the time and energy of the teacher. This kind of positive deviation indeed is a rarity.
Recalling our arguments from sections 1 and 2, we honestly believe, this is a pity.

Organization of robotics contests world-wide depends on individuals who are
steeling time from their other duties. This process is not dissimilar to that of the
development of local cultures. It is a bottom-up competition for the survival of the
fittest. We see both positive and negative consequences:
1) (+) Approaches that are more interesting, having better impact and stronger

potential, survive the selection process and become more established;
2) (–) Different players have different starting positions. Distributors of specific

construction sets and their network has a much stronger position than a group of
academics regardless the actual value of the activities;

3) (–) Efforts, materials and resources get wasted, when teams decide to discontinue
challenges they joined earlier. Some interesting ideas can never get implemented.

4) (–) The organization is more exhausting, taking its toll on the organizers,
hampering the progress. It usually depends on private sponsorship, which
requires enormous efforts in the fund-raising activities, leaving less time to
provide a better service and content.

That, however, is a real-life, and the situation in many areas of the society. As [2]
nicely put it: “Everybody in the orchestra tries to convince the others to use their
instruments and to play in a local club that is not able to accommodate the

6 Pavel Petrovič

orchestra“. Somewhat different situation can be observed in some Asian countries,
which, undoubtedly, took over the technological lead in various fields already.

To provide an overview of the robotics contests, we must start with the initiatives
of the US FIRST association, which probably has the largest impact. US FIRST
cooperate with many associations around the World to prepare global educational
challenges for children at different age levels.

Namely, Junior FLL, for ages 6-9, where children build models with moving,
possibly motorized parts containing simple machines. They present a poster on their
model. Despite the popularity of this contest, we are not convinced that children are
mature enough for it. Playing is vital at this age, not so much the contests, and the
stress to produce something. Having a sensitive didactic approach can be very helpful.

FLL (FIRST LEGO League) for ages 9-14 in the US, and 10-16 in Europe [12] is
the most popular one, students having 3 months in their clubs to prepare 1) a robot to
complete a course consisting of multiple independent challenges of varying difficulty,
and 2) a little research project on a specified topic. The children’s solutions are often
so good that college students who are given the same task are unable to equate their
performance. We find this competition to be very useful and effective. Watching the
showpieces prepared by the children makes the organizers very proud and usually
suggests that a very hard work has been done on the side of the team coach, who is
typically a teacher. And here we do not mean the work on the model or research
project, which, of course is forbidden, but the didactic work done on the team, on the
children. The FLL experience leaves a strong learning trace in the children. Our only
concern relating FLL is the style of the challenge specification for the research
project. The children are expected to perform a study and develop a solution in one of
the areas that are of a critical importance to us all. Recent challenges dealt with issues
such as climate changes, biomedical engineering, safe transport, or safe food. The
children are asked to find plausible solutions to real problems pertaining in our world.
While it is excellent to give them a reason and motivation to learn more about the
World around them, it is also very unrealistic to believe they can possibly recognize a
real problem and suggest a plausible solution to it. Perhaps, one in thousand can, but
all play. The challenge thus either becomes just an obligatory ride, or a competition in
teams getting hold of a “smartest” consultant who brings both the questions and the
answers. We believe, there are interesting creative scientific projects students may be
able to work on that are at a suitable difficulty and knowledge level. The outcome,
however, would not be a novel solution. Rather, the outcome would be the learning
experience, a personal discovery of facts, principles, and phenomena. And yes, they
could even be demonstrated or approached in novel ways, if the team chose to do so.

FTC (FIRST TECH Challenge) for ages 14-18 is an advanced competition where
robots of multiple teams perform together on a field to solve a specific task consisting
of multiple smaller challenges. Robots are much larger than in FLL, they are built of
metal parts, strong motors, and typically have some kind of manipulator arms
attached. During parts of the game the robots must navigate autonomously, while in
other parts they are remotely controlled using a wireless network modules and
joystick consoles. The schedule of the competition follows that of the FLL. A first
pilot tournament in “Eastern” European countries was organized in 2011 in Romania.

Ten Years of Creative Robotics Contests 7

FRC (FIRST Robotics Competition) is very similar to FTC – it has the same age
level, and also contains autonomous and remote-controlled sections, different
challenge every year, but involves more interaction with human teams, which are
larger. It is organized in cooperation with NASA and requires even more advanced
robots. Both FTC and FRC require lots of space for the field setup, and have a high
budget frame. The format is one of a TV show, but represents a lot of learning and
hard work behind.

WRO (World Robot Olympiad) is an Asian answer to FLL, with quickly increasing
impact. It has a similar format in the sense a new challenge is announced every year,
and it has strict and precisely defined limitations on the allowed material. WRO
covers all age levels from the primary through junior high school up to senior high
school categories (college students can participate in the open exhibit). The main
(positive) difference to FLL is that the WRO competition is focused on one complex
task instead of multiple smaller tasks typical for the FLL. On the other hand, WRO is
crippled by a bizarre requirement that the participants must assemble, program, and
test their robots during 150 minute session at the competition site. In practice, they
build, program and test their robots in their clubs during the months between the
challenge is announced and the tournament, but they bring their kits unassembled.
Teams that better memorized the robot morphology and teams that are able to
reconstruct the program faster have more time for testing, sensor calibration and
tuning and thus higher chances to succeed. Our impression from 2007 when we were
involved in this competition in Scandinavia was: this will change soon. It proved
false, unfortunately.

RCJ (RoboCup Junior) is an academic educational initiative that annually
organizes one major world event (combined with senior RoboCup leagues) [11]. It is
similar to FLL in that it also has a network of regional competitions to select the
teams for higher rounds. Notice though a few important differences to FLL/WRO:
1. RCJ does not restrict the use of materials, sensors, motors and control units. On

one hand, this means the better access to electronics labs, hardware workshops,
university students or teachers, industrial professionals the team has, the better
are its chances to win or succeed. This puts the teams in an uneven starting
position. On the other hand, this opens up the really free range of possibilities so
important for creative learning. And it also creates important connections out of
the conceptual box of the virtual game. The game becomes real.

2. Even though the challenges of RCJ slightly evolve from year to year, the main
mission usually remains the same. That allows the successful teams to participate
again, and again and eventually pass their robots on to younger team-mates,
making the starting threshold for others ever more difficult.

3. The team size of RCJ is not so strictly predefined as in FLL and it is smaller, in
fact individual participants are also welcome and not unusual. This leaves the
teacher the option to choose the approach that is most suitable for his or her local
situation. On the other hand, team focus of FLL gives the option to do more on
the didactic side and to provide more tailored instructions and supporting
material for the teacher/coach, leaving his or her job easier.

8 Pavel Petrovič

4. RCJ is organized on a voluntary basis (FLL employs some full-time professional
organizers) and thus RCJ can never achieve the level of professionalism of FLL.
On the other hand, RCJ events last more than one day and include social events.

RCJ consists of three challenges – robotic soccer with infrared ball, rescue
challenge, and robot dance.

Line-following contests of various flavors are the most common type of local
robotic contests. Building a simple line-following robot can be efficiently done by a
complete beginner in two hours, but developing a fast robot with advanced sensors
and algorithms that is to perform on complex track is difficult enough for professional
engineers.

Sumo contests are inspired by the human sumo wrestling, the robot’s goal is to
push the opponent robot out of a circular ring. The solutions usually have simple
algorithms, the focus lies on the mechanical construction and electronics. How to
create a reliable and strong robot? Many different size/weight versions exist from
larger 20x20cm, 3kg robots, down to pico-robots of 12.5mm square footprint.

Micromouse contests are traditional single challenge maze-navigating contests that
have been active for decades. Even though only little new can be invented here, the
contest is a good benchmark and challenge for every truly dedicated roboticist.

RobotChallenge and Istrobot are annual Central-European contests that involve
various categories including line-following, sumo, micromouse, but also other
creative categories such as humanoid sprint, puck-collect, and humanoid sumo. The
most creative category is free-ride, where the participants can bring and present their
own robots of any kind. In other parts of the world, many other contests are
organized, these include solving various maze tasks and racing tracks, for an example.

The contests mentioned above are suitable for young people from secondary or
even elementary schools. Many other contests that are suitable for college students
exist, among them Eurobot [9], Freescale Race Challenge, multiple categories of
RoboCup including RoboCup@Home contest for indoor service robots, FIRA soccer
competition, Robotour [10], and other.

5 Creative Robotics Contest

In the description above, we have omitted one distinguished type of contests that we
find particularly interesting and useful. It is different from all the other types, and we

Fig. 1. Example models from the creative contest. See robotika.sk/rcj for more.

Ten Years of Creative Robotics Contests 9

are not aware of others who would have been organizing it too.
The origins of the idea can be traced back to the 90s, when LEGO Dacta Control

Lab construction sets were distributed to more than 100 schools in Slovakia as part of
the government project. During this time, many teachers from elementary schools
received training and acquired certificates. Pupils aged 10-14 took part in informatics
classes typically in two or three different years, and the construction sets were
actively used in the classes. Between 1994 and 1998, pupils from Czech and Slovak
republics used to gather once a year in the free time center in the Czech town Hradec
Králové. They were given or brought their own construction sets. The pupils were
given a workplace with a computer and 4-5 hours of time. They constructed and
programmed a creative model. At the end they have demonstrated its functionality
and graded their own ideas by attaching cards to the models they liked the most.

The idea has been followed up in a Slovak national competition, with sporadic
participation from the Czech Republic. It is organized since 1999 and more than 100
pupils participate annually. From 2001 categories of the RCJ contest (soccer, rescue,
dance) were added to the competition, but the creative category remains. In this
version of the contest, pupils were always assigned an area. Imagine the following
example areas: agriculture, tourism, disabled people, space exploration. Their model
was expected to demonstrate some important issue or solve a particular demand of
people in the selected area. Pupils prepared a short presentation where they
demonstrated the model and software functionality using a story they made up for that
purpose. The jury graded the students in various categories, namely functionality,
program efficiency, robustness, presentation, user comfort, and design. See figure 1
for examples of the models.

Despite the popularity of the contest, teachers were giving us the following
feedback: the task was too loosely specified, pupils often built the model they have
prepared in their school or club, and made up the story and small minor adjustments
during the contest to fit it the assigned area. Thus it was not the real skills they were
showing, but the model they have learned to build in their club or school. In addition,
the grading of the jury was complicated and subjective. We responded to this
feedback by changing the rules as follows: the pupils were assigned a specific task
instead of a general theme. They did not know the task in advance and learned all
about it directly at the contest, where we have demonstrated the rules directly on the
practice field. Then again, they had 4-5 hours to build, program and test the robots
built from the construction sets. At the end, they demonstrated the performance of
their robots, and they received an objective score based on points their models earned
according to clear and unambiguous task specification.

We have tried this version of the contest in four consecutive years since 2008. The
tasks (all prepared by the author) can function as virtual games outside of the
competition contest during regular school or club activities. In that case, it is
recommended to allot a longer time to this activity, approximately 10 hours divided to
2 or 3 meetings. The following sections describe the tasks we have prepared.

2008 – Ball collecting. The task was inspired by one of the tasks used in the WRO,
but we have modified it to form our own version. The goal was to build a robot that
can travel along the track marked by a black line that was interrupted at a few places

10 Pavel Petrovič

and knock down coke cans that were placed on top of wooden prisms with triangular
base. On the way back to the start, the robot could collect six table-tennis balls that
were resting in the centers of black circles close to a wall, see figure 2. We have
prepared two testing fields, where the students could try and debug their models
during the building and programming phase. The score was assigned as follows: 10
points for entering a gate, 5 points for each ball brought to the start/goal, 10 points for
each can knocked down, 10 points for successful return of the robot. In case of equal
scores, the robot that was faster to knock down the first can won. 15 teams
participated, and one of them scored 100 out of the maximum 120 points.

2009 – Hubble Space Telescope mission took place exactly at the same time when
the Atlantis space shuttle was out in the space to repair the Hubble. This inspired us to
formulate the following task. The space shuttle robot with a random direction heading
is placed and started on the Earth, represented by a blue circle. The sun is represented
by a strong light coming from a lamp mounted on the floor. Like Atlantis that was
launched around midday, the robot was to turn towards the sun, and leave the Earth
towards the orbit. After reaching the orbit – a black line around the Earth, the robot
was required to start orbiting, i.e. following the line. The Hubble was a white cup,
fixed on the floor surface. The goal of the robot was to put three little LEGO models
into the cup – install the replacement instruments and unload the astronauts (space
walk). Finally, the astronauts boarded the shuttle again, the robot turned back to the
Earth and landed on top of it. Scoring: 10 points for starting towards the sun, 10
points for reaching the orbit, 10 points for orbiting, 4 points for each instrument
installed, 5 points for each space walking astronaut, 10 points for re-boarding, 10
points for landing, and -2 points for each astronaut lost. This contest appeared to be of
a suitable difficulty. 15 teams participated. One team earned the maximum 82 points,
the following three teams in the ranking order earned 77, 69, and 67 points. The
atmosphere during the building phase could be described as concentrated efficient
dedication, and made the organizers were happy.

2010 – Life on Titan was a life-seeking mission to the largest moon of Saturn. The
task was to collect a sample (set of table-tennis balls waiting in a tube to be unloaded
to the robot), which was left and marked during a visit of previous space probe. Thus
the robot should have followed a black line (the trace) which splits in two at some
location. The correct direction was determined by a light beacon. Earlier than that, the
robot must wait on a traffic light until its technical control will complete, indicated by
the change of light color. After the sample was collected, the robot was to navigate to
an evacuation location, a place marked by a flashing light. Thus robots needed to be
able to distinguish between a steady and a flashing light (an interesting programming
task). The field plan is shown in figure 2. Scoring: 10 points for reaching the traffic
light, 10 points for reaching the light beacon, 10 points for reaching the sample, 10
points for each sample ball, and 10 points for reaching the evacuation location. 21
teams participated, while the best team acquired 140 points.

2011 – Atmospheric Exploration required the teams to operate a balloon. The field
was divided into several atmospheric layers, troposphere, stratosphere, mesosphere
and thermosphere. Robot starting on Earth was to load two instruments (blue and red
balls), board a balloon and fly up. Troposphere contained biological forms to be

Ten Years of Creative Robotics Contests 11

studied – birds represented by a black tape segments. Identification required to
produce a sound after every bird has been detected. The mesosphere contained an
illuminating cloud that was to be studied by one of the instruments. The other
instrument was to be released in the direction of the sun. Robot was to jump out of the
balloon and land on the Earth again. Scoring: 5 points for loading the instruments, 10
points for boarding the balloon, 5 points for leaving the Earth, 5 extra points for
leaving the Earth with balloon, and 5 extra points for each instrument, 5 points for
every bird that was correctly identified, 10 points for each instrument released, 10
points for leaving the balloon, 5 points for reaching troposphere, and 5 points for
reaching the Earth. 22 teams participated, maximum score was 65 out of possible 95.
The task appeared to be difficult and the teams with almost complete solutions were
not lucky to earn all their points.

Fig. 2. Playing fields for the creative contest in 2008-2011. Details at robotika.sk/rcj.

Observations. One important observation is that the concept of virtual game works.
The tasks kept the children focused, organized, and concentrated for several hours.
Even the children that normally had difficulties concentrating accepted the working
atmosphere and tried to obtain the best outcome. The scenarios always required
creativity, experimentation, open thinking, discussion, and team cooperation. The
children showed their true potential and could not be influenced by the advice of the
teacher. Every mission was a valuable and memorable hands-on learning experience.
We are very happy to learn that our past participants are currently successful and very
active students, and continue to participate and even win in further robotics contests.

6 Supporting the Teachers

Despite the fact that LEGO provides good quality learning materials, teachers need
inspiration, projects, and other type of help. Unfortunately, the NXT-G software has
not been localized to Slovak language until today, which would definitely have had
happened if it were an open-source project. We have written a reference manual in
Slovak language, and translated the programming manual to NXC language [3],
however, this cannot solve the difficulties of a 10-year old child facing English labels
of various software controls. The icons are an advantage, but menus, dialogs, and
labels are in English.

We have organized several teacher trainings for the recent LEGO NXT
construction sets, and made the material with projects with solutions suitable for
beginners available online [3]. We have specified a technical and didactic concept for

12 Pavel Petrovič

robtivities portal [4], and implemented a prototype [5], which believe will be in
operation in multiple languages during the conference at portal.centrobot.eu. Useful
studies were compiled in final and master theses of our students and colleagues
[6,7,8]. We are preparing further didactical materials to support the teachers.

7 Conclusions and Future Work

We have coined the term virtual games and explained some didactic purposes of
competitions. We have discussed the frontline of robotics contests from a critical
point of view. We explained what we think is one of the most suitable forms of
robotics contests and provided examples that we realized and that can also be re-used
as virtual games outside of the competition context. The article is a contribution to the
ongoing discussion on the robotics contest. We think that the current initiatives are
valuable and should continue, but that they absolutely need help in the
institutionalization and coordination so that the organizers may save a lot of efforts
and time they currently must spend on recruitment, fund raising and administration.
This may allow integration of the efforts in the future – first signs of which can
already be seen in a pilot integration of RCJ category into WRO this year.

8 References

1. Petrovic, P., Balogh, R.: Educational Robotics Initiatives in Slovakia, in Teaching with
Robotics: didactic approaches and experiences, SIMPAR, Venice (2008)

2. Hofmann A., Steinbauer G., Bredenfeld A.: Robotics in Education Initiatives in Europe -
Status, Shortcomings and Open Questions in Teaching Robotics, Teaching with Robotics,
SIMPAR, Darmstadt, (2010)

3. Referenčná príručka ku grafickému jazyku NXT-G, Programátorská príručka k jazyku NXC,
Stavebnice LEGO MINDSTORMS NXT vo vyučovaní, online: robotika.sk/nxt, (2009)

4. Balogh R., Dabrowski A., Hammerl W., Hofmann A., Petrovic P., Rajnícek J.: in Centrobot
Portal for Robotics Educational Course Material, Robotics in Education, Bratislava., (2010)

5. Rajníček J.: Portál výukovej robotiky pre projekt Centrobot, Bachelor thesis, Faculty of
Mathematics, Physics and Informatics, Comenius University, Bratislava (2010)

6. Malík M.: Zavádzanie robotiky do vyučovania informatiky, DVUI záverečná správa, Štátny
pedagogický ústav, (2010)

7. Lehocká D.: Didaktické materiály k téme robotické stavebnice a Imagine Logo, DVUI
záverečná správa, Štátny pedagogický ústav, 2010.

8. Pataky M.: Robotické laboratórne experimenty pre stredoškolskú fyziku, master thesis,
Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (2010)

9. Obdržálek, D.: Eurobot Junior and Starter - A Comparison of Two Approaches for Robotic
Contest Organization, In Robotics in Education, Bratislava (2010)

10.Iša, J. Dlouhý, M.: Robotour - robotika.cz outdoor delivery challenge, In Robotics in
Education, Bratislava (2010)

11.Sklar, E., Johnson, J.H., Lund, H.H.: The Educational Value of Children's Team Robotics:
 A Case Study of RoboCup Junior. In: AROB (2002)
12.Petrovic P., Onacilová D., Svetlík J. Skúsenosti s prípravou sútaze v stavbe a programovaní

robotov FIRST LEGO League z pohladu organizátora, trénera a rozhodcu, Didinfo (2010)

Information Technology Education Add-on:
„Improving Media Literacy“

Rainer Planinc, Elisabeth Wetzinger and Monika Di Angelo

Vienna University of Technology,

Institute of Computer Aided Automation
Favoritenstraße 9-11/183, 1040 Vienna, Austria

{rainer.planinc, elisabeth.wetzinger, monika.diangelo}@tuwien.ac.at

Abstract. New media, especially the internet, have spread vastly and are
omnipresent nowadays. Media literacy is seen as a key qualification and
considered to be a basic cultural skill. As a consequence, great importance has
to be attached to the promotion of media literacy, particularly in regard to
school education. The first part of this paper discusses the terms „media“ and
„media literacy“. In the subsequent parts we present different (exemplary)
approaches that aim at the improvement of media literacy as part of IT classes.
The cutting-edge topics, chosen with respect to everyday relevance for
teenagers and their interests, are centered around „General Terms and
Conditions of Online Social Networks“ and „Digital Images and Videos“.

Keywords: media literacy, digital natives, digital images, videos

1 Introduction

Ulrich Saxer considers media literacy in [13] as a basic cultural skill. He also refers to
it as a key skill in today‘s information society. However, the meaning of „media
literacy“, particularly in reference to children and teenagers is often reduced to
security issues and the careful use of the Internet. Undoubtedly, these are important
topics, but certainly „media literacy“ is a term of wider comprehension.

Before going into detail on „media literacy“, it is necessary to have a quick look at
the term „media“ in this context: media does not only include new media such as the
internet or mobile communication media, but also printed media (e.g. newspapers),
television, radio, motion picture and so on.

According to an evaluation by Harald Gapski [6] there exist more than a hundred
different attempts aiming at a definition of media literacy. And due to the various
types of media, it turns out to be exceedingly difficult to precisely and uniquely define
the term „media literacy“. Hence we present a few attempts, which seem to be
particularly important in the context of school education.

Dieter Baacke divides the meaning of media literacy into four dimensions [3]:

• Instruction-oriented dimensions: “media critique“ and “media studies“
• Goal-oriented dimensions: “media use” and “media design”

Schiermann et al. describe media literacy in [14] to consist of three complementary
components: competence in handling and use of (media, internet and communication)
technology, competence in the design of socio-technical (by means of media, internet
and communication) technology and competence in sophisticated criticism of these
technology.

Media literacy is about dealing with media, looking at it with a critical eye and
using it creatively [7]. The latter does not mean the creative use in an artistic manner,
but the skills to use media to fulfill one’s own concepts and needs (in an artful way).
One aim of the promotion of media literacy is the acquisition of expertise to provide a
competent handling of media. This includes an understanding of media as well as
media production skills.

A consolidated view at the definitions of the term „media literacy“ indicates the
following key points: operational competence and design competence, utilization
competence as well as competences in regard to social, ethical, informative and
analytic aspects. Due to the fact that nowadays most teenagers widely have access to
computers and the Internet [9], its handling and competent use is increasingly seen as
the key factor of media literacy.

Owing to the use of social networks like Facebook and the extensive media coverage,
the awareness of security issues concerning the Internet has increased. As adults
nowadays are somewhat aware of risks within the Internet, also the awareness of
students and children needs to be raised. They often lack the understanding for the
need to protect their privacy and they often deem these risks harmless. Thus,
developing the media literacy of teenagers has to deal with these new risks when
using the Internet. But media literacy is much more than just dealing with privacy
issues. Media literacy also has to deal with the consequences of using social networks
like Facebook. Using Facebook does not necessarily mean that you have poor social
relationships in real life. But it definitely changes the every day’s life of people
throughout the world, which needs to be addressed when talking about media literacy.
Online social networks are mostly used to stay in touch with (real) friends and for
communication with them [4]. A way to integrate and use new technologies and
especially Facebook in the class is shown in [10].

But media literacy is still more than privacy and social networks. It should not only
consider social media, but all types of media. Children and teenager naturally deal
with pictures, audio and video every day. But often they do not have a clear
understanding of the underlying processes and no consolidated knowledge of the
technology they use. Hence, they only use a few simple operations on the media
instead of a creative and holistic media composition – they just produce and consume
media in an incidentally way. A deeper understanding of the underlying processes
(e.g. how can I enhance the picture quality although the file size should be small?)
offers much more possibilities. Due to these facts, it is important that media literacy
also deals with some fundamental basics of these media. This does not have to be
done using ex-cathedra teaching, but can be done in interactive and interesting ways
(e.g. working with audio [5]).

In the following section two core areas of media literacy are discussed in detail.
First we show the importance of online social networks as Facebook, MySpace and
Netlog in the context of its relevance to society and the discerning use of new media.
The focus of the second part is on the improvement of design and utilization
competence through hands-on experience, using examples.

2 General Terms and Conditions of Social Networks

Following [8], the majority of young people use social networks extensively.
Therefore it is important to encourage a careful and responsible usage of it. This is not
achieved by control or penalty. Success is much better achieved by establishing
awareness of the possible risks when being online. The first step towards this aim is to
instill that awareness in the teachers, which for the most part are not „digital natives“.
This is a prerequisite in order to educate the young people appropriately.

The General Terms and Conditions (GTC) of a web service provide an overview of
the rights, duties, risks and responsibilities when using it. However, hardly anyone
reads the GTC before accepting them. A closer look at the GTC proves to be
worthwhile as it uncovers some frightening details. Due to the popularity of
Facebook, Netlog and MySpace the GTC of these online social networks were
analyzed in [10] and [15]. Some of the detected facts are:

• It is not possible to completely delete any kind of data once published in the
internet. This is also stated in the general terms and conditions of Facebook
in a way that they have the right to not delete data even if the user asked for
it.

• Private information is used to offer personalized advertisements [11]

• Published information is possibly forwarded to third parties.

• From a legal point of view Facebook is allowed to use every information,
text, picture, video, etc. for any purpose.

• Facebook, Netlog and MySpace presume that the personal data entered by
the user is correct, truthful and exact as well as the user is “sui juris”

• The user is responsible for consequences resulting from the use of the
network. These include for example the copyright law, the personal rights,
the patent and trademark law.

• The legal basis for jurisdiction is anything but trivial. As the users may
access the social network from anywhere in the world, an agreement
conferring jurisdiction to a place chosen by the provider is part of the GTC.
Facebook uses Californian law, whereas MySpace follows the laws of the
State of New York. For Netlog the courts of law of Brussels are responsible
and therefore Belgian jurisdiction is applied. The average user has no
knowledge and above all, no “feeling” of what is legal with respect to the
applied law.

Everyone who wants to use online social networks should be aware of these
conditions. Especially young people intensively use such networks, but unfortunately
many of them are oblivious of which rights and duties apply. Without doubt online
social networks have many advantages, but the disadvantages (especially the ones
mentioned above) are often concealed. In order to improve the media literacy of
young people, it is exceedingly important to focus on these disadvantages or
restrictions and to discuss them. Thereby it is aimed on gaining a discerning look at
using Facebook and the internet in general.

3 Digital Images and Videos

Problem-based learning use problems as starting points, which are practically relevant
for the students. A specified tangible problem has to be solved with the aid of
resources of individual choice [1].

Since videos and digital images are parts of the daily life of teenagers, practice-
oriented and every-day relevant problems can be formulated easily. One example
could be the purchase of a new digital camera: In order to be able to make a
reasonable purchase decision, one has to know the meanings of the different camera
parameters and its relevance to the personal usage of the camera. During some
research on the important parameters for buying a new camera, students are
confronted with terms like resolution, ISO value, noise, HD ready (720p) and so on.

However, the primary goal is not to find the best camera available on stock, but to
get an understanding of the different factors, camera-parameters and aspects and their
interdependence. Secondarily the students should be able to make a reasonable
fictitious purchase decision based on of some given requirements the camera should
meet using the knowledge learned before. They should also be able to argue their
decision. The theoretical background and a summary of the most important
parameters are represented in [11].

It is important to not only theoretically, but also practically gain knowledge and
experience with the topic. Therefore we recommend the concept of circuit training,
because it is based on open and active teaching methods and advances self-reliant
learning.

At first, several physical stations are prepared, which contain different working
instructions. Some stations may be associated to each other, but they do not
necessarely have to share something in common. The instructions at each station are

to be worked out in small student teams. Examples of such instructions can be found
in [11]. After an appropriate amount of working time a team proceeds to the next
station. In general, it is irrelevant in which order the stations are worked through. It is
only important, that each team visits every station.

For the promotion of media literacy regarding digital image and video each station is
about a different camera type. As almost all modern cameras are able to record
videos, both picture and video file formats can simply be analyzed using the
following concept. Camera types, which are recommended to be used for stationary
learning, are: mobile phone camera, webcam, digital camera, digital single-lens reflex
camera (optionally).

Fig. 1: circuit training

Image quality differs due to different camera types and their purpose of use.
Possibilities to easily experience these distinctions are provided by using the
three/four camera types mentioned above. Figure 2 shows the same motif taken by
different camera types under poor lightening conditions: The picture at the upper left
shows a reference image representing the desired result took under normal lightening
conditions. The following pictures show the same motif, but once taken with a mobile
phone camera (upper right), digital camera (lower left) and a digital single-lens reflex
camera (lower right). The lighting was reduced to a minimum to better demonstrate
the noise performance of the individual devices.

One task of the circuit training exercise could be the reproduction of these images
with an evaluation of its differences relating qualitative aspects (e.g. quality, noise
performance and white balance) or quantitative aspects (e.g. file size). The reason for
these differences is mainly caused by the different sizes of the image sensors: the
image sensor of a mobile phone camera is significantly smaller than one of a digital
single lens reflex camera. In general it can be said, that the smaller the image sensor,
the worse the noise performance and generally the performance in darker
environments is.

Fig. 2: Noise performance of different camera types under poor lightening conditions [12]

Other tasks could include taking pictures or recording videos using different
parameter-settings such as different

• resolutions

• frame rates (video)

• ISO-settings

• file formats/compressions

• file formats

This circuit training exercise aims at the ability of students to discover and understand
the different impacts of each parameter on the final result of the picture. Furthermore
this knowledge allows for reasonably choosing the appropriate parameter settings for
different requirements. For example the students should learn, that especially in
darker environments digital single-lens reflex cameras perform much better than
digital compact cameras, whereas in light environments the differences may be
marginal.

During circuit training the students are asked to write up central questions relating
to the topic, which afterwards are worked out and discussed using the jigsaw method
[2]. The jigsaw method has two steps: For the first step the class is divided into as
many groups as there are subtopics to be worked out – these are the expert groups
who work out their subtopic (which may consist of more than one central question
depending on the total amount of central questions written up before). So every
member of a team becomes an expert on this central question or subtopic (Figure 3
(a)). The work is based on forms prepared by the teacher in order to structure the
teamwork and on doing online research. The forms contain the central questions,
some basic information on the subtopic and useful hints to online resources.

Once every expert team has gained sufficient knowledge of its subtopic, the teams
are re-formed so that each new team consist of at least one member of every expert
team (Figure 3 (b)). Now every expert has to teach the other group members the
subtopic learned in the first step and should be able to answer questions related to it.
The big advantage of this concept is the active attendance of every student, which
leads to a sustainable learning success.

 (a)

(b)

Fig. 3: Jigsaw method (a) first step: becoming experts in a subtopic (b) second step:
knowledge exchange

More examples and working instructions related to the improvement of media literacy
in contexts of digital image, moving picture and digital rights aspects of online social
networks can be found in [11] and [15].

4 Conclusion

In this paper we have presented a discussion of the term „media literacy“, focusing on
various different attempts to define it. Regardless which one is used, media literacy
must not be reduced to just being able to safely and competently use the Internet.
Furthermore, examples representing approaches for IT-classes at school, which focus
on different aspects of media literacy with respect to digital images and videos were
shown. These examples have been chosen in such a way that the topics are relevant
and interesting for teenagers, as anchors can be found in their daily lives. We have
shown that media literacy also has to deal with legal aspects since agreements are
concluded very easily in the internet – just by accepting the general terms and
conditions of a website. Future work will deal with the evaluation of these concepts
within school classes.

References

1. Arnold, K., Sandfuchs, U., Wiechmann., J.: Handbuch Unterricht. 2nd edition. Julius
Klinkhardt (eds.), Bad Heilbrunn (2009)

2. Aronson, E.: The jigsaw classroom. 1st edition. Sage Publications, Beverly Hills
(1978)

3. Baacke, D.: Medienpädagogik. Niemeyer, Tübingen (1997)
4. Boyd, D. M., Ellison, N. B.: Social Network Sites: Definition, History, and

Scholarship. In: Journal of Computer-Mediated Communication vol. 13, Nr. 1, pp.
210-230 (2008)

5. Eisenbarth M., Di Angelo M.: "Experimentieren mit digitalem Ton". In: G.
Brandhofer, G. Futschek, P. Micheuz, A. Reiter, K. Schoder (eds.), Proceedings of 25
Jahre Schulinformatik in Österreich, pp. 291-295, Melk (2010)

6. Gapski, H.: Medienkompetenz. Eine Bestandsaufnahme und Vorüberlegungen zu
einem systemtheoretischen Rahmenkonzept. VS Verlag für Sozialwissenschaften,
Wiesbaden (2001)

7. Hamm, I.: Fernseh- und Radiowelt für Kinder und Jugendliche. In: Schriftenreihe der
Landesanstalt für Kommunikation Baden-Württemberg, vol. 3, Nr. 1., pp 69-76,
Villingen-Schwenningen (1996)

8. Lenhart, A., Purcell, K., Smith, A., Zickuhr, K.: Social Media & Mobile Internet Use
Among Teens and Young Adults. Pew Research Center report.
http://www.pewinternet.org/Reports/2010/Social-Media-and-Young-Adults.aspx (last
accessed on April 29th)

9. Österreichischer Rundfunk: Medienbesitz und Mediennutzung der Jugendlichen in
Österreich. Markt- und Medienforschung,
http://mediaresearch.orf.at/c_studien/Mediennutzung Jugendlicher 2008.pdf (last
accessed on April 29th)

10. Planinc R., Di Angelo M.: Facebook im Unterricht. In: G. Brandhofer, G. Futschek,
P. Micheuz, A. Reiter, K. Schoder (eds.), Proceedings of 25 Jahre Schulinformatik in
Österreich, pp. 296-304, Melk (2010)

11. Planinc, R.: Didaktische Aufbereitung bekannter Video-Kompressionsverfahren.
Diplomarbeit, Technische Universität Wien, Wien (2010)

12. Planinc R., Wetzinger E., Di Angelo M.: Von der Kamera ins Web, In: G.
Brandhofer, G. Futschek, P. Micheuz, A. Reiter, K. Schoder (eds.), Proceedings of 25
Jahre Schulinformatik in Österreich, pp. 285-290, Melk (2010)

13. Saxer, U.: Medien als Gesellschaftsgestalter. In: Medienkompetenz als
Herausforderung an Schule und Bildung. Ein deutsch-amerikanischer Dialog.
Konferenz der Bertelsmann Stiftung, Gütersloh (1992)

14. Schiersmann, Ch., Busse, J., Krause, D.: Medienkompetenz – Kompetenz für Neue
Medien. Studie im Auftrag des Forum Bildung (2002)

15. Wetzinger, E.: Unterrichtskonzept Digitales Bild: Bildkompression, Dateiformate und
Anwendungen. Diplomarbeit, Technische Universität Wien, Wien (2010)

iPods in Primary School

A Pilot Project at the Austrian “School in the Park”

Anton Reiter
1
, Rosemarie Stöckl-Pexa

2
, Peter Sykora

3

1 Federal Ministry of Education, Arts and Culture, Präs./IT,

Schreyvogelgasse 2/303, 1010 Vienna, Austria, anton.reiter@bmukk.gv.at
2 journalist and author (project documentation)

Lichtentaler Gasse 16-18, 1090 Vienna, Austria, r.stoeckl-pexa@chello.at
3 Öffentliche Volksschule der Stadt Wien (“School in the Park”),

Währinger Straße 43, 1090 Vienna, Austria, direktion@school4u.at

Abstract. For the first time students of an Austrian primary school have been

equipped with iPods at the “School in the Park” located in the 9th district of

Vienna. The Federal Ministry of Education, Arts and Culture funded iPod touch

devices of the 3rd generation for all students of a so called Freinet class.

For a scientific evaluation of the project a single case study is carried out. First

results confirm international studies on iPod use in primary school: The

students quickly get familiar with the iPod, they are motivated to learn and to

try out different applications. The mobile device can also be used outside the

classroom which is a key benefit.

For education based on Freinet pedagogy it is particularly important that iPods

support individual learning and foster cooperative social forms.

Keywords: iPod, primary school, Freinet pedagogy, mobile computing, 1:1 in

education, case study, Austria

1 Introduction

Mobile computing is the future of ICT, also – and particularly – in education!

Considering this fact the Austrian Federal Ministry of Education, Arts and Culture

(BMUKK) equipped students of a primary school in Vienna with iPod touch devices

of the 3
rd

 generation1. The students use their iPods in classroom and at excursions,

during lessons and also in leisure time.

The iPod project is already the second new media project undertaken at the

“School in the Park” with the support of the BMUKK: From 2005/06 to 2008/09, the

class of teacher Peter Sykora made use of Web 2.0 resources, such as wikis, podcasts

and the video portal YouTube. Now as teacher of the iPod class Mr. Sykora combines

1 Technical specifications about the iPod touch 3rd generation see at

http://support.apple.com/kb/SP570

his past Web 2.0 project experiences with the advantages of a mobile tool by using

the iPod touch for 1-to-1 education.

2 Background of the Project

Nowadays, ICT are considered to be useful tools in primary schools2 – and even in

pre-school education3. A “Study of the impact of technology in primary schools”,

funded by the European Commission and coordinated by the European Schoolnet,

states positive effects on learners and learning:

“ 1. ICT improves children‟s knowledge, skills and competences

2. ICT increases motivation, confidence and engagement in learning

3. Assessment can be more sophisticated and individualized”

(http://eacea.ec.europa.eu/llp/studies/documents/study_impact_technology_primary

_school/brochure291009_en.pdf)

While the use of PCs or Notebooks in primary schools is well researched, the iPod

is – even by most teachers – still seen mainly as a device for listening to music,

watching videos or playing computer games. Up to now only a few studies in the

United Kingdom4, the USA, Canada, Australia5 and New Zealand have been carried

out to evaluate the educational potential of this cult product of the digital age.

2 ICT in primary schools in Austria:

a) recommendations: Empfehlungen der IKT Grundschulexpertengruppe des bmu:kk

(Innsbruck, 31.05.2007) mit Ergänzungen der bmu:kk Abteilungen I/1 (Volksschulen und

Minderheitenschulen) und I/9 (Einsatz innovativer Technologien) vom 08.01.1008

b) literature:

Reiter, A., Grimus M., Scheidl, G. (eds.): Neue Medien in der Grundschule.

Unterrichtserfahrungen und didaktische Beispiele. Ueberreuter, Wien (2000).

Grimus, M.: ICT and Multimedia in Primary School. In: PC News 70, Nov. 2000, pp. 34-36

Schwetz, H., Zeyringer, M., Reiter A. (eds.): Konstruktives Lernen mit neuen Medien.

Beiträge zu einer konstruktivistischen Mediendidaktik. Studienverlag, Innsbruck, Wien,

München, Bozen (2001)

Eder J., Reiter A. (eds.): Computereinsatz an österreichischen Grundschulen gestern – heute

– morgen. Studienverlag, Innsbruck (2002)

Reiter, A.: 20 Years of Informatics Instruction in Austrian Schools and the Use of ICT in

Class. CDA Verlag- und Handelsges. m.b.H., Perg (2005)
3 UNESCO Institute for Information Technologies in Education: Recognizing the potential of

ICT in early childhood education. Analytic survey. Published by the UNESCO Institute for

Information Technologies in Education, Moscow (2010)
4 Flakefleet Primary School

 (http://www.lancsngfl.ac.uk/ictservices/ictcentre/index.php?category_id=414)

 St. Francis Catholic Primary School

 (http://www.lancsngfl.ac.uk/ictservices/ictcentre/index.php?category_id=415)

 Forres Primary School

 (http://www.thegrid.org.uk/learning/ict/research/casestudies/forres.shtml)
5 Department of Education and Early Childhood Development, State Government of Victoria:

iPod Touch Research Report, Hampton (2008)

(http://delphian.com.au/sites/delphian.com.au/files/files/attachments/ipod-touch-research-

report20081215.pdf)

Janet Wilkinson, Headteacher of St. Francis Catholic Primary School, UK, states:

“The iPod touch is a useful educational device and there is a great deal of choice in

the applications you can use, to some extent there is too much choice. (...) The pupils

have found the devices easy to use and work with them well.”

(http://www.lancsngfl.ac.uk/ictservices/ictcentre/index.php?category_id=415)

For Epsom Primary School, Australia, the quick access to the Internet is a key

benefit: “The instant access can give you results straight away which doesn‟t take

over the learning time. Just two taps and you are on the Internet. (...) The iPod Touch

gives you instant access and instant learning.” (Department of Education and Early

Childhood Development, State Government of Victoria: 23)

According to international studies the advantages of the iPod can be summarized

as follows:

 Availability of software: Thousands of apps (applications), often free of

charge, centrally available via iTunes, simplify or enhance the teaching and

learning processes.

 Mobile Internet: The option of unlimited Internet access is ensured via W-

LAN, although in practice availability is limited, since hot spots are not

found universally. Access via a router or a mobile wireless solution could be

helpful.

 Motivation: The use of iPods as enhanced media players, offering almost

the functionality of a full computer, result in increased motivation.

 Social skills: The 1-to-1 ratio, one iPod per child, fosters independence and

responsibility, particularly when students are permitted to use the devices

also during leisure time. Group work and cooperation are promoted as well.

 Media competence: Media use, considered in the positive sense, contributes

to media education. Therefore it is necessary to bring the devices that today‟s

children are growing up with into the classroom.

3 Project goals

Through a 2 ½ years lasting scientific evaluation should be found out to which extent

the positive results reported by international studies can be confirmed by the specific

Austrian iPod project. The following general goals were established before starting

the project:

 Identifying organizational and technical conditions required for iPod use,

i. e. reliable options for storing and charging the iPods, maintenance and

updating the software, provision of the required peripheral devices and

Internet access;

 Raising ICT competence which includes training the students in the use of

hardware and software, building awareness of responsible handling and of

possible risks, in particular concerning the Internet;

 Exploring the educational potential of iPods by testing programs and

applications (learning software, knowledge databases, podcasts …) with

regard to the benefits for different educational subjects as well as for the use

at home;

 Developing recommendations for parents and teachers by informing and

educating of parents in the use of iPods, particularly during leisure time, as

well as offering specific didactic recommendations for teachers.

4 Organizational and Technical Conditions

In the start-up phase of the project the organizational and technical conditions for

the effective educational use of iPods were identified and fulfilled:

 Storage: The iPods are stored in a combination-locked safe in the classroom.

This ensures that the devices are always close to hand. The combination is

also known by the students, which promotes an awareness of responsibility.

To help maintain order, every iPod is stored in its original packaging.

 Charging: The devices are charged in the classroom by five chargers for

every four iPods. The students in turn act as “minders” to supervise the

charging. If an iPod has to be charged at intervening times, it is connected to

a running PC via USB.

 Maintenance: So far, no external maintenance has been required; the class

teacher has exclusively been responsible for maintenance. Major problems

arose only in a few cases, such as when a child accidentally deleted all

programs and it was necessary to restore the default settings.

 Updating: Installation of new versions and additional programs is a time-

consuming process. The class teacher downloads the data on his MacBook

and then transmits it to the iPods of the students one-by-one. Colleagues as

well as parents assist the class teacher.

 Access to the Internet: After a test operation until December 2010, the

students can use the Internet via W-LAN, inside school and at hot spots in

the city of Vienna for instance when being on excursions.

5 Didactics

The iPod project is carried out in a Freinet class; this means that the iPods are used

according to the Freinet pedagogy. The pedagogical approach of the French

educational reformer Célestin Freinet (1896-1966) assumes that children enjoy

learning when they are allowed to decide for themselves what to do. The most

important concepts of this pedagogic approach are the following:

 “Pedagogy of Work („Pédagogie du travail‟) – meaning that pupils learned

by making useful products or providing useful services.

 Co-operative Learning („Travail coopératif‟) – based on co-operation in the

productive process.

 Enquiry-based Learning („Tâtonnement experimental‟) – trial and error

method involving group work.

 The Natural Method („Methode naturelle‟) – based on an inductive, global

approach.

 Centres of Interest („Complexe d'intérêt‟) – based on children's learning

interests and curiosity. ”

(http://www.freinet.org/icem/history.htm)

Class teacher Peter Sykora‟s opinion that ICT are ideal tools for Freinet pedagogy

is supported not only by other Austrian teachers like Astrid Sonnleitner, but also by

the UNESCO Institute for Information Technologies in Education:

“If Freinet had had available media like Internet, search engine, homepage,

computer, printer, e-mail during his lifetime, he would have used these tools

adequately.”6 (Sonnleitner in Schwetz et al.: 234)

Célestin Freinet “integrated the classical and modern pedagogical ideas and ICT

existing in the 1930s to formulate a model of school that can be recognized as an

educational framework for many modern applications in primary education (...)”.

(UNESCO Institute for Information Technologies in Education: 20)

The iPods are mainly used interdisciplinary. For example, searching the Internet

for the term “bagpipes”, the students downloaded written information (subject

“General Education”) and music videos (subject “Music”) from the Internet. Since the

students also use apps in English language, they learn English quite automatically.

The iPods are suited for different teaching and learning forms. Frontal

instruction is used for explaining the operation of the iPod and of new apps. During

group work, some students work on a content together, one of them makes notes on

the iPod. If they work individually, the students share solution strategies for

completing tasks on the iPod. They use the iPod spontaneously as well as planned,

according to the work schedule.

The project class has already started to use the iPod as a communication tool. The

students write e-mails, short blog entries and Tweets; they exchange dates like

birthdays via the “Calendar” app.

The work phases with the iPods are of varying length; the students are largely free

to determine duration and frequency of iPod use. On average, the students work with

the iPods for half an hour to an hour per week.

6 Selection of Software (Apps)

There are numerous apps available which are suitable for primary school students. A

few apps are preinstalled on the iPod, others can be downloaded either free of charge

or purchased – for a lower price than comparable software for PCs.

The followings apps are frequently used in class:

Preinstalled app:

6 „Hätte Freinet zu seinen Lebzeiten Medien wie Internet, Suchmaschine, Homepage,

Computer, Drucker, E-Mail zur Verfügung gehabt, so hätte er diese Mittel adäquat genutzt.”

(original German quotation)

 “Music” can download and display not only audio files like music and

spoken text, but also videos. Educational podcasts are particularly popular, e.

g. “Kinderuni” (Children‟s University) or “The Show with the Mouse”.

Downloadable app free of charge:

 “Maps” displays maps from the WWW located by street names, geographic

terms and points of interest. The program supports voice recognition.

Purchased apps:

 “Articles” searches for terms in the Wikipedia online encyclopedia and

shows a summary of the entries and an image. Pages inappropriate for

children do not appear.

 “Tree identification”: Trees can be identified based on specific features,

such as the shape of the leaves and the trunk, blossoms and fruit color.

 “Dr. Brain” trains general education, logic and visual memory.

 “Times Tables” is a multiplication trainer, starting with the 2
nd

 row, with

increasingly difficult tasks until the 12
th

 row can be solved.

 “Slice it!”: Geometric figures have to be cut into pieces as close in size as

possible using straight lines. The app is used as a supplement to geometry

because it trains area comprehension and deduction.

 “What is what – Dinoquiz” is a guessing game on dinosaurs.

7 Evaluation of the iPod Project

For a scientific evaluation of the iPod project at the “School in the Park” a single case

study is carried out that will be completed by the end of 2011. The aim of the study is

to find out whether iPods are appropriate devices to achieve the educational

goals set in the Austrian curriculum for primary schools.

In the section “General Educational Goals” of the Austrian curriculum for primary

schools ICT are mentioned only once: One goal is “the development and transmission

of basic knowledge, skills, competences, understanding and attitudes that serve the

learning of the basic cultural techniques (including the use of modern communication

and information technologies suitable for children)”7

(http://www.bmukk.gv.at/medienpool/14043/lp_vs_erster_teil.pdf)

How the educational goals can be fulfilled is described in the section “General

Didactical Principles”8; the hypotheses (see below) are derived from these principles.

As Margarete Grimus states, the way in which ICT are integrated in primary school

education falls within the area of school autonomy (see Grimus in Mitzlaff: 216)9. At

7 „Entwicklung und Vermittlung grundlegender Kenntnisse, Fertigkeiten, Fähigkeiten,

Einsichten und Einstellungen, die dem Erlernen der elementaren Kulturtechniken

(einschließlich eines kindgerechten Umganges mit modernen Kommunikations- und

Informationstechnologien) (...) dienen”
8 Bundesministerium für Unterricht, Kunst und Kultur: Lehrplan der Volksschule, Dritter Teil,

Allgemeine didaktische Grundsätze, Stand: BGBl. II Nr. 368/2005, November 2005, pp. 22-

27 (http://www.bmukk.gv.at/medienpool/14044/vslpdritterteil3682005frhp.pdf)

the “School in the Park” iPods are used according to the educational approach of

Célestin Freinet.

Defining a research objective, it must be taken into account that there is reference

data on the use of ICT, but not of iPods in Austrian primary schools; therefore one

objective is to highlight the strenghts and weaknesses of the iPod in comparison to

other ICT devices like PC or Notebook. Financial and personal resources,

organizational conditions and technical equipment available in school must be

considered as well.

The research questions are derived from the research objective:

 Is the hardware suitable for primary school students?

 Is sufficient software available for educational purposes?

 Which didactic methods are appropriate?

 What are the financial and personal resources required, what

organizational conditions and technical equipment do we need?

7.1 Preparation and Data Collection

Since the project at the “School in the Park” is the first iPod project at an Austrian

primary school, the focus is on exploration, i. e., the study uses a qualitative

approach. The hypotheses of the case study are based on the didactical principles of

the Austrian curriculum for primary schools and of Freinet pedagogy.

The following table shows research methods applied to research objects:

Research objects Research methods

 Semi-

structured

interview

Written survey

using a

questionnaire

Participant

observation

Non-

participant

observation

Class teacher

Team teacher

All students

Selected students

All parents

Selected parents

7.2 Data Analysis

For the evaluation of the iPod project primary research is complemented by analysis

of secondary material.

9 „Es ist eine der Aufgaben der Grundschule, grundlegende Medien- und IKT-Kompetenz zu

vermitteln. Im Unterschied zu den traditionellen Kulturtechniken Lesen, Schreiben und

Rechnen sind Lehrplanziele für diese vierte Kulturtechnik in Österreich jedoch kaum

ausgeführt. Details der Integration von IKT fallen in den Bereich der autonomen

Schulprofile.”

The semi-structured interviews are recorded, transcribed, categorized and

analyzed using qualitative content analysis10. This method is also applied to the

answers to the open-ended questions of the written surveys; the answers to the

closed-ended questions are categorized and displayed as a table and as a graph.

Every action of the students during participant and non-participant observation

is described and categorized; verbal comments are also subject to qualitative content

analysis.

Work schedules as well as short texts, written by the class teacher, the team

teacher, students or their parents (e. g. class blog entries) serve as secondary

material. The work schedules are statistically evaluated; qualitative content analysis

is applied to the written texts.

7.3 Results

By the end of school year 2010/11 the results of the semi-structured interviews with

the class teacher, the team teacher and selected parents, the written survey of all

students and the results of the participant observation are available. They confirm the

hypotheses to a large extent:

 Hypothesis 1: The iPods (hardware) as well as the available software are

suitable for handling by primary school students.

Confirmed: The students understand the graphical user interface intuitively

– even more easily than their parents. Most children state it is “moderately

difficult” to use the iPod; no child finds it “difficult”. For the majority of

boys it is “easy”, for the majority of girls “moderately difficult”. The

students prefer the multi touch screen as an input device to the mouse they

use on the PC; only for writing longer texts they give preference to the

keyboard. Even though the screen is very small there are no safety concerns

because the work phases are short. In general the students have good

understanding of the software used in class; if they find an application

difficult it may be due to the handling (e. g. the compass) or to the required

knowledge (e. g. a knowledge quiz). Careful evaluation of the software by

class teacher, team teacher and some parents guarantee that there is no

harmful content.

 Hypothesis 2: iPods support social learning because they foster cooperative

social forms (e. g. working in teams or pairs, helping each other).

Largely confirmed: The iPods are used in individual work as well as in

partner or group work. If they may choose the social form the students

mostly form groups in which each child works with her or his own iPod,

using the same application as the others. The students exchange hints for

solving tasks and help one another. The small screen is an obstacle to group

work using one iPod together. The students frequently cooperate in class,

10 Mayring, P.: Qualitative Inhaltsanalyse. Grundlagen und Techniken. Beltz Verlag, Weinheim

und Basel (2003)

working with iPods or not; this suggests that not (only) the working tool but

the pedagogy is crucial for social learning.

 Hypothesis 3: iPods are part of the students’ world of experience and

communicate contents by appealing to several senses (multimedia-based).

Partly confirmed: iPods are part of the students‟ world outside school now,

but before the iPod project had started most parents only used PCs. The

project raised the interest of the parents in iPods, now most of them have

either an iPod or an iPhone at home. A few students have learnt to send e-

mails or use the Internet from their parents before this was taught in class.

Primary school students generally rather play computer games on Gameboys

or cell phones, so the iPod is “something special”. The project class

frequently uses multimedia-based applications, e. g. videos or interactive

software, on the iPod as well as on the iPad or the PC.

 Hypothesis 4: The iPod gives a holistic view of the subject of a lesson

regarding various aspects, e. g. by using the Internet.

Confirmed: The iPods are mostly used interdisciplinary. The students

complement what they have learned by carrying out their own investigations,

e. g. by using online encyclopedias.

 Hypothesis 5: According to the curriculum the iPods are used in different

subjects.

Confirmed: Up to now the iPods were used in most subjects; there are

useful applications even for handcrafts and physical education. For writing

longer texts and for the preparation of presentations PCs are more suitable.

 Hypothesis 6: The iPod motivates the students to learn and encourages them

to try out different work techniques, inside as well as outside class.

Largely confirmed: The iPod motivates the students to learn because even

not so attractive contents like multiplication are interesting if practiced with

an interactive educational game. In the initial phase of the project the

students almost always preferred the iPod to traditional media like

worksheets or books, more and more it became a work tool like others. In

class the students try out different work techniques on the iPod, e. g. various

educational games, e-mail and Internet. At home the children mainly play

games like Doodle Jump on the iPod, only a few use it for learning.

 Hypothesis 7: iPods facilitate personalized instruction. They are suitable

for dividing the class into varying groups with different tasks.

Confirmed: Students use the iPods according to their own paths of learning.

Slower children are assisted by the teacher or other students. Since the

project class is a Freinet class the students usually form varying groups with

different tasks.

 Hypothesis 8: iPods are used in different learning phases (exercise,

repetition, revision, applying knowledge in a new context). By using the iPod

students can check their knowledge on their own.

Confirmed: iPods are used in all learning phases. By using educational

games the students frequently check their knowledge on their own.

 Hypothesis 9: iPods are used for creative joint activities like writing a digital

class magazine or exchanging e-mails.

Largely confirmed: The students frequently write Tweets, some exchange

e-mails with class-mates and parents. They have started to write short entries

for the class blog.

 Hypothesis 10: iPods help students to explore the world they live in, e. g. by

carrying out their own investigations or during field trips.

Largely confirmed: The students search the Internet for contents they are

interested in. Applications like Tree Identification are used also outside

school. Mobile Internet access would be very useful on field trips but is not

available up to now.

 Hypothesis 11: The students decide for themselves to use the iPod,

spontaneously as well as scheduled.

Confirmed: If the students may choose teaching material they decide in

about half of the cases for the iPod (in the beginning they took the iPod in

almost any case). They use it more often spontaneously than scheduled.

 Hypothesis 12: Class teacher and students together set binding rules for the

use of the iPods.

Largely confirmed: Most rules for the use of the iPods were set by the class

teacher, but the students could give input (e. g. “minders” for charging the

devices was an idea of the students). The children stick to the rules

concerning the iPod.

Hypothesis 1 – 8 base on the didactical principles of the Austrian curriculum for

primary schools, hypothesis 9 – 12 on the principles of Freinet pedagogy.

To evaluate the cost-benefit ratio financial and personal resources,

organizational conditions and technical equipment must also be taken into

account. The findings show that without funding by the Federal Ministry for

Education, Arts and Culture and the class teacher’s knowledge of Apple devices the

project would not have been possible. Except for the mobile access to the Internet the

organizational and technical conditions were not a major problem.

7.4 Conclusion

The results show that iPods are appropriate devices for primary school

education. Without the long boot time typical for PCs, the iPod is immediately ready

for operation, therefore it is ideal for spontaneous use. iPods are cheaper than PCs,

Notebooks and Netbooks, so it is easier to realize 1-to-1 computing, but still too

expensive without funding. Because of their small size they can also be used outside

the classroom, e. g. during field trips, what cold be improved by mobile Internet

access.

References

iPod Manuals

1. Biersdorfer, J. D., Pogue, D.: iPod. The Missing Manual. O'Reilly Media, Inc., Sebastopol,

Canada (2009)

2. Bove, T.: iPod & iTunes For Dummies. Wiley Publishing, Inc., Indianapolis, Indiana (2008)

3. Hart-Davis, G.: How to Do Everything iPod, iPhone & iTunes. McGraw-Hill Osborne

Media, New York, Chicago, San Francisco (2009)

4. Miser, B.: My iPod touch. Que, Indianapolis, Indiana (2010)

iPods in Education

1. Department of Education and Early Childhood Development, State Government of Victoria,

Australia: iPod Touch Research Report. Hampton (2008)

(http://delphian.com.au/sites/delphian.com.au/files/files/attachments/ipod-touch-research-

report20081215.pdf)

2. Flakefleet Primary School, UK

(http://www.lancsngfl.ac.uk/ictservices/ictcentre/index.php?category_id=414)

3. Forres Primary School, UK

(http://www.thegrid.org.uk/learning/ict/research/casestudies/forres.shtml)

4. Kervin, L., Reid, D. (Faculty of Education, University of Wollongong, Australia), Vardy, J.,

Hindle, C. (Wollongong Diocese of Catholic Education): A partnership for iPod pedagogy:

Using the technology of millennial learners across educational contexts. In: ASCILITE

2006. The 23rd Annual Conference of the Australasian Society for Computers in Learning

in Tertiary Education

(http://www.ascilite.org.au/conferences/sydney06/proceeding/pdf_papers/p111.pdf)

5. St. Francis Catholic Primary School, UK

(http://www.lancsngfl.ac.uk/ictservices/ictcentre/index.php?category_id=415)

6. STEPS: Study of the impact of technology in primary schools (Brochure)

(http://eacea.ec.europa.eu/llp/studies/documents/study_impact_technology_primary_school/

brochure291009_en.pdf)

7. STEPS: Study of the impact of technology in primary schools (Synthesis Report)

(http://eacea.ec.europa.eu/llp/studies/documents/study_impact_technology_primary_school/

02_synthesis_report_steps_en.pdf)

8. UNESCO Institute for Information Technologies in Education: Recognizing the potential of

ICT in early childhood education. Analytic survey. Published by the UNESCO Institute for

Information Technologies in Education, Moscow (2010)

9. Vallance, M.: iPod therefore iWrite. Future University, Hakodate, Japan (2006)

(http://associates.iatefl.org/pages/materials/wi4.pdf)

10. Vardy, J., Kervin, L., Reid, D.: iPods and podcasting technologies to support Talking and

Listening experiences of Grade 4 Students

(http://www.englishliteracyconference.com.au/files/documents/Papers/Refereed%20Papers/

Jeff%20Vardy.pdf)

ICT in Austrian Primary Schools

1. Bundesministerium für Unterricht, Kunst und Kultur: Lehrplan der Volksschule, Erster Teil,

Allgemeines Bildungsziel, Stand: BGBl. II Nr. 368/2005, November 2005, pp. 1-3

(http://www.bmukk.gv.at/medienpool/14043/lp_vs_erster_teil.pdf)

2. Bundesministerium für Unterricht, Kunst und Kultur: Lehrplan der Volksschule, Dritter

Teil, Allgemeine didaktische Grundsätze, Stand: BGBl. II Nr. 368/2005, November 2005,

pp. 22-27 (http://www.bmukk.gv.at/medienpool/14044/vslpdritterteil3682005frhp.pdf)

3. Eder J., Reiter A. (eds.): Computereinsatz an österreichischen Grundschulen gestern – heute

– morgen. Studienverlag, Innsbruck (2002)

4. Grimus, M.: ICT and Multimedia in Primary School. In: PCNews 70, Nov. 2000, pp. 34-36

5. Reiter A., Grimus, M., Scheidl, G. (eds.): Neue Medien in der Grundschule.

Unterrichtserfahrungen und didaktische Beispiele. Ueberreuter, Wien (2000)

6. Grimus, M.: Computer in österreichischen Grundschulen. In: Mitzlaff, H. (ed.):

Internationales Handbuch Computer (ICT), Grundschule, Kindergarten und Neue

Lernkultur, Band 1, pp. 216-222. Schneider Verlag, Hohengehren (2007)

7. Schwetz, H., Zeyringer, M., Reiter A. (eds.): Konstruktives Lernen mit neuen Medien.

Beiträge zu einer konstruktivistischen Mediendidaktik. Studienverlag, Innsbruck, Wien,

München, Bozen (2001)

8. Reiter, A.: 20 Years of Informatics Instruction in Austrian Schools and the Use of ICT in

Class. CDA Verlag- und Handelsges. m.b.H., Wien (2005)

Freinet Pedagogy

1. History of Freinet Pedagogy (http://www.freinet.org/icem/history.htm)

2. Sonnleitner, A.: Freinet-Pädagogik mit PC und E-mail? In: Schwetz, H., Zeyringer, M.,

Reiter A. (eds.): Konstruktives Lernen mit neuen Medien: Beiträge zu einer

konstruktivistischen Mediendidaktik, pp. 228-236. Studienverlag, Innsbruck, Wien,

München, Bozen (2001)

Links to the School in the Park

1. http://www.school4u.at/ipod

2. http://twitter.com/#!/ipodklasse

3. http://www.facebook.com/parkschule

YouTubeVideos

1. Ipod Education at GEMS Royal Dubai School

(http://www.youtube.com/watch?v=V9kczm4QWos)

2. iPod in Education - video overview pt2

(http://www.youtube.com/watch?v=2-AROmt1yhM&NR=1)

3. iPods in Education (http://www.youtube.com/watch?v=N6LlA2SztY8&feature=related)

4. iPods used in KCK elementary school (http://www.youtube.com/watch?v=L2GBbLGO9d8)

5. Using iPods in Our Classroom for the First Time

(http://www.youtube.com/watch?v=X2UJQ_UrPW4&feature=related)

6. Using the iPod Touch in the Classroom

(http://www.youtube.com/watch?v=3bhzjB0TyOE&feature=related)

http://www.youtube.com/watch?v=V9kczm4QWos
http://www.youtube.com/watch?v=2-AROmt1yhM&NR=1
http://www.youtube.com/watch?v=N6LlA2SztY8&feature=related
http://www.youtube.com/watch?v=L2GBbLGO9d8
http://www.youtube.com/watch?v=3bhzjB0TyOE&feature=related

 Creativity in Computer Science Education –
Eleven Findings

Ralf Romeike

University of Potsdam

Institute of Computer Science
14482 Potsdam, Germany

romeike@cs.uni-potsdam.de

Abstract. Creativity increasingly receives attention in the context of computer
science education in the last years. In this article 11 research based findings
concerning creativity in CS education will be outlined. Consequences are drawn
from creativity research and research in computer science and computer science
education. A short description of an example for a creative introduction to
programming illustrates the implementation of the findings and its
consequences.

Keywords: Creativity, Computer Science Education, Scratch.

Introduction

Computer science (CS) education provides an important contribution to secondary
education. However, its aims and goals are manifold and vary widely in the
educational discussion. In the last years there seems to be a shift in the community
regarding the perception of computer science and hence the purpose of computer
science education. Traditionally, competencies of CS such as problem solving,
programming and the understanding of computer systems have been considered as
essential. Now also “soft” competencies like creativity come into focus. Modern
software and learning environments like Scratch encourage and support creativity in a
computer science context. As a new learning objective, empowering youth to use
modern technology and CS strategies in a creative way is aimed for. More and more
CS educators are becoming aware of the potential that technology offers for realizing
ideas, and making everyday life better and easier. CS education plays an important
role in achieving this goal.

In the following, eleven research based findings concerning creativity in CS
education will be outlined. Consequences are drawn from creativity research and
research in CS and CS Education. A short description of an example for a creative
introduction to programming illustrates the implementation of the findings and its
consequences.

11 Findings about Creativity in CS Education

1. In an educational context creativity needs to be considered from an
individual’s perspective.

The term “creativity” has been used with different meanings and has been
discussed controversially in the field of psychology. Correspondingly, research in
creativity focuses on a variety of aspects, such as identifying, assessing, and fostering
creativity. Moreover, various dimensions such as a creative person, creative process,
influence of environmental factors, and creative products are explored in creativity
research (see e.g. [1] for further consideration).

In contrast to historical creativity, which describes ideas that are novel and original
in the sense that nobody has ever come up with them before, p-creative designates
something that is fundamentally to the particular person [2]. In educational context,
p-creativity is based on knowledge in both practical and applied form as well as on
the willingness to acquire and use this knowledge. We consider learning processes
from an individual’s perspective as described by Boden [2].

With this in mind, we call a phenomenon “creative” in this paper when it leads to
original, adaptive, and useful ideas, solutions, or insights (cp. [3, 4]). Typical
characteristics of creativity include high interest, intrinsic motivation, enjoyment, and
individual’s challenge by the work itself (cp. [5]).

2. Creativity in the classroom enhances intrinsic motivation and thus may result
in a better success in learning.

Being creative is fun and motivating. Motivation is the driving force behind any
human action and essential for learning processes. Educators know about the
importance of motivation. Intelligence, aptitude and social background are factors that
can influence learning, but they are out of reach of the teacher. Intrinsically motivated
students reach better achievements. This possibility to raise a student’s achievement
may be used as a powerful tool by the teacher. Interestingly, creativity and motivation
determine each other. Studies investigated the motivation of software developers in
Open Source projects (e.g. [6, 7]). They identified enjoyment-based intrinsic
motivation, namely how creative a person feels, as the strongest and most pervasive
driver. Also in computer science lessons the motivating effect of being creative can be
put into action. Students report about motivation due to the constructive character of
computer science and the possibility of creative self-fulfillment [8]: It is fun to be
creative! In being creative one finds self-fulfillment and self-realization.
Csikszentmihalyi named such an intensive involvement in a creative activity as Flow
[9]. For learning such a condition would be optimal if reached by students.

Summarizing, creativity in the classroom promises to enhance motivation,
attention, curiosity and concentration, thus resulting in a better success in learning.

3. Research indicates emphasizing creativity improves Computer Science
Education.

Several researchers argue that computer science generally is a creative endeavor
and hence students need to be motivated to get insights in creative problem solving
(e.g. [10]). This will lead to creative design processes which require open ended tasks
in real life contexts and exploration [11]. These ideas are supported by a study by Gu
and Tong [12] who found that in courses for software development courses design
and programming activities were considered as creative by students and preferred to
other activities. Similar observations are reported for secondary education [13]. In
programming courses, allowing and encouraging students to be creative increased
motivation and interest [14-16]. Related ways to foster more creative learning settings
include:
 changes in the environment and encouraging creative, hands-on-learning and

exploration into the projects in a data structures and algorithms course ([17])
 letting students choose and process their own problems ([18])
 allowing programming as personal creative expression (e.g. [19, 20])
 presenting programming in an entertaining discovering way [21]

Additionally, creativity is called for from several authors in CS education, because:

 Graduates in CS are missing creativity and problem solving skills [22]
 Creativity is underrepresented in the curriculum [23]
 Women drop out because there is no room for individual creativity in CS courses

[24]
 Creative abilities are seen as the highest form of literacy, including computer

literacy [25]

Summarizing, many of the activities undertaken in computer science are highly

creative. In order to address the motivation of our students and at the same time
meeting this creative perception of CS, creativity should be highlighted, encouraged
and supported in CS lessons whenever possible.

4. Creativity forms a pathway to Computer Science.

By analyzing students’ computing experiences Knobelsdorf and Romeike [26] found
that characteristics of creativity may form possible pathways into the field of
computer science. In an empirical study they examined computing experiences in the
form of “computer biographies” of CS majors. These where previously collected to
explore how students learn and understand Computer Science. The study had two
major outcomes. First, characteristics of creativity were found in computer
biographies of many students who chose to major in computer science: These students
particularly perceive CS as fun, creative, and autonomous; which is typically
described in the context of programming. Striving for well working software was the
main motivator for engaging in programming. In the majority of programming
processes, tasks chosen by students themselves are meaningful to them, but often
surprisingly irrelevant as a product. In these processes the activity (mostly

programm
from arti
that a c
knowledg
as highly
Second,
describe
get involv
classes is
even mor

This a
and high
space for
subject to
creative a
keep mor
education

5. Creati

Constr
for compu
learning
felicitous
public en
them fro
understan
learning
construct
situation
learning t

ming) is most
ists. This grou
omputer offe

ge, exploration
creative.
the students
their lessons i
ved in creativ
s needed in o
re students can
aspect is espec

dropout rates
r individual cr
o study becau
aspects of CS
re women in
n in the field o

ive learning e

ructionist lear
uter science e
as a construc

sly in a conte
ntity” [28]. Le
om the outs
nding of learn
of computer

tionism the as
and their ow

that follows a

t important, w
up of students
rs them. The
n, and unders

who are attr
in high schoo

ve activities: A
rder to not di
n be attracted
cially challeng
s of women in
reativity in CS
use CS is per
S in secondar
CS course bu

of CS).

extends const

rning is recog
education: In h
tive process a
xt where the
arners should
side. The co
ning provides

science. Cre
spect of probl

wn capabilities
creative think

Fig. 1: Resnic

which is typica
ts is fascinate
ey express a
standing. We

ributed a crea
ol as disappoin
Apparently a
iscourage and
if they discov
ging when se
n CS: Women
S courses [24]
rceived as un
ry education
ut also persua

tructionist lea

gnized and do
his constructio
and emphasiz
learner is co

d dive into rea
onstruction o
an appropria

eative learning
lem finding w
s. Resnick [
king spiral (cp

cks Creative Th

al for creative
ed and interes

strong desir
consider the

ative approac
nting due to a
bigger empha

d lose this par
ver the creativ
een in the con
n often drop o
] or they just d
ncreative (e.g.
and higher ed

ade new stude

arning.

ocumented as
onist learning
zes that learni
nsciously eng

al situations in
of artifacts
te basis for m
g adds to lea

with regard to
29] proposes

p. Fig. 1):

hinking Spiral.

e processes a
sted in the po
re for gainin
activities of t

h to compute
a lack of possi
asis on creativ
rt of students
e side of CS.

ntext of meage
out because th
do not conside

[27]). Uncov
ducation may
ents to consid

a successful
theory Papert
ng “happens

gaged in cons
nstead of just l
and a const

meaningful an
arning in the
o the learner’s

a process fo

and known
ossibilities
ng further
this group

er science
ibilities to
vity in CS
s. Possibly

er interest
there is no
er CS as a
vering the
y not only
der further

 approach
t describes
especially

structing a
looking at

structionist
nd creative
e sense of
s personal

or creative

“In this process, people imagine what they want to do, create a project based on
their ideas, play with their creations, share their ideas and creations with others, and
reflect on their experiences—all of which leads them to imagine new ideas and new
projects. As students go through this process, over and over, they learn to develop
their own ideas, try them out, test the boundaries, experiment with alternatives, get
input from others, and generate new ideas based on their experiences.” ([29], p. 18)

In formal educational settings “imagine” can be interpreted as problem finding and
idea generation. Hence, obviously creative learning is based on ideas of the learner,
but not the teacher (cp. also [30]).

6. Computer science is considered as creative by computer scientists.

Computer science, as computer scientists see it themselves, is a creative field to
work in, where creativity is demanded and encouraged (for example [31-33]). Studies
show that generally CS is perceived by non-computer scientists as uncreative, non-
social, and theoretical [27, 34-36]. However, computer scientists point out the creative
facet of CS:

„Computer science is the first engineering discipline ever in which the complexity
of the objects created is limited by the skill of the creator and not limited by the
strength of the raw materials” (Brian K. Reid cited in [37]). In contrast to other
disciplines the computer scientist can take part in constructing his own world. Unlike
in physics or chemistry the reality is not set but can be modified and extended.
Especially programming/software development is considered to be creative: “It is
there that the original source of creativity lies” [38]. Several pioneers of computer
science agree [39, 40]:
Ray Ozzie: Programmers are very creative, self-directing, self-motivating people.
Bill Gates: So much judgment and creativity goes into a programming project.
Guido van Rossum: To me, [programming] relates strongly to creativity, which is
very important to my line of work.

Would it not be beneficial if students, who generally refer to creativity in the
context of fields like music and art only, supported the statements above?

7. Programming is the “song writing” of computer science.

Probably no other domain of CS is as involved with the creation of creative
products as programming. While the creation of music is usually not questioned as
being creative, this indeed is different with software design. However, parallels from
the field of musical composition to programming can be easily drawn. The composer
as well as the programmer needs a stimulus that starts the creative process. Often it is
called an inspiration, idea, problem, task, request or any kind of motivation for
somebody to write a song/software. The composer/programmer draws from his
inventory of knowledge (facts, concepts, etc.) and puts it into the design of his
musical/software work. The design process is strongly influenced by constraints,
which need to be obeyed. The composer needs to regard his culture group, customs
and personal preferences and has to obey certain constraints such as tonality, style,

harmonic rules, rhythm and others. The programmer needs to consider constraints like
the circumstances of how, where and by whom the software shall be used as well as
limitations of the programming language used, computing resources and many more
[41]. During the design both use a pool of problem solving patterns, heuristics and
experiences and apply them in finding and realizing a musical or software solution.
Both processes result in a “creative” product. The creative character in all of the
phases of software development is elaborated by Glass [31] and Romeike [42]: When
finding and concretizing a goal, when managing and solving problems, when creating
the software product, in testing and when presenting the final result. For CS lessons
software development is especially interesting when students have the possibility to
develop and realize their own (and thus personal relevant) ideas. Only out of this can
the intrinsic motivation develop, which is essential for creative performance.

8. Computer Science is Art.

Art is the embodiment of creativity in a traditional sense. As outlined above,
creative processes in art and CS are comparable. Hence it is not surprising that some
computer scientists describe their field as art. Here you find two different viewpoints.
First, the focus is on the creative process itself (mostly programming): the computer
scientist perceives the things he does as art, based on his abilities, knowledge and fun
in creating fine software (e.g. [43]). Out of this comes the idea of “beautiful code”
and appropriate software design. Second, the emphasis is less on the process but more
on the computer scientist/programmer who is acting as an artist. Here the focus is on
the creative artistic product; mostly a piece of software which expresses expertise,
elegance, often efficiency and creativity simultaneously.

Another context for CS and art is where artists use CS and programming in order
to produce artwork. The primary interest here is less efficiency, elegance or reliability
of software but the development and elaboration of ideas and the aesthetic success of
the work. CS contributes to the creation of art by providing ICT that can be used to
support artists, ranging from image, audio and video processing software to
interactive components for live installations (e.g. with Arduino1).

9. Computer Technology supports Creative Learning.

Probably no other school subject is more influenced by its tools than CS. Also,
there is probably no other school subject that can rely on such a variety of tools for
introducing a topic, simulating facts or as a subject matter. ICT is seen as helpful for
the support of creativity; a wide body of creativity research in CS is concerned with
the possibilities of supporting creativity in professional areas as well as in learning
scenarios [44]. New technologies can support creative processes in collecting, relating
and connecting information and ideas, in creating something new and disseminating
the outcome. Doing so the roles of ICT can vary from nanny, pen-pal, coach to
colleague [45]. A creativity supporting environment is essential for creativity.

1 Arduino is an electronic platform allowing to create programmable interactive electronic

objects, cp. www.arduino.org.

However, an understanding of fundamental CS concepts is necessary in order to use
ICT creatively. Research based criteria for choosing a tool with respect to creativity
are discussed in [46] and with respect to secondary CS education in [47].

10. Creative computer science lessons can lead to learning success in secondary
education.

At a time when standardized tests are getting more and more common the call for
more attention to something that is seen as ineffective as creativity may seem a bit
odd. We developed and evaluated a prototypical lesson sequence for a creative
introduction to programming with Scratch in order to investigate the practicability and
outcomes of creativity-oriented CS lessons (cp. [13]). Scratch [48] is a visual
programming language that had a tremendous impact on CS education within the last
several years and is used increasingly in primary and secondary education. The
intuitive user interface makes the implementation of creative CS lessons easy. The
design of the lessons follow from the findings stated above: Maintaining students’
attention and fostering motivation was supported by showing the use and relevance of
the concepts to be learned to the students and by choosing topics meaningful to them,
e.g. animating their name or a story from their everyday life or imagination, and the
development of games. Often new concepts were brought up by the students
themselves after discovering and applying them in their projects before their “official
introduction”.

Essential for a creative lesson is providing an inspiration to the students, generally
by showing an example program or brainstorming about possibilities. This allows the
students to spark their creativity: to balance what they may want to achieve and what
they can achieve with the concepts learned so far and what the programming language
is capable of. Hence the students were challenged by open ended tasks with variable
solution complexity and independent working time. The tasks assigned were basically
pointing the students into a direction giving a general “frame” about what to do. Thus
the students had to solve a problem they needed to clarify for themselves up front
(“What do I want to do?”). There was no one right solution that needed to be achieved
(openness) and – as time allowed – the solution could be elaborated upon by the
students. An example of such a task was: “Design a program, which displays your
name and animates the letters to interact to the mouse or keyboard!”

This way the students could get familiar with the concepts just learned, explore the
programming environment, find solutions for their ideas, implement and test them.
The teacher would go around, encourage the students to try out their possibilities and
only interfere if asked or needed. Usually such a working period ended with the end
of a lesson. This way those students, who wanted to elaborate their work or to extend
or modify their programs, could continue to do so at home.

The teaching unit introducing programming fulfilled the expectations: The students

enjoyed the lessons, the learning objectives were met and the students’ picture of CS
improved. This is in unison with studies where contextualization, personalization, and
choice produced dramatic increases: in students’ motivation, their depth of
engagement in learning, the amount they learned in a fixed time period, and their

perceived competence and levels of aspiration [49].
The students’ effort was concentrated and intrinsically motivated. Even when a

lesson was over many of them did not want to leave the classroom in order to
continue in working at their project (Flow). The presentation and dissemination of the
students’ results led to increased motivation in the next lesson. Even another course at
the school was getting to know the results of this course as many students soon started
to play online the games created.

After the lessons the students described computer science as a subject that requires
creativity but also allows them to be creative. Obviously it was possible to win the
interest of the students by encouraging creativity. The learning success was surveyed
by analyzing the grades and outcomes of a programming test and in a comparative
study with a control group that was receiving lessons in a “traditional” way with
problem solving tasks. Results are given in detail in [13]; Fig. 2 shows the outcomes
of the survey where the creative group (A) experienced the programming lessons e.g.
as more fun, interesting and creative as the control group (B).

Fig. 2: Student judgments: Agreement in Comparison with Control group.

11. The relevance of creativity in computer science education is increasing.

Up to now mainly complex software products were used on personal computers
and computer science secondary education often was misunderstood as training for
use of such products. With the App stores of Apple, Google, Amazon, etc. youth have
access to smaller and hence more accessible and reproducible software products:
Various tools and games are available for smartphones, tablet computers, and social
media websites like Facebook and Google. Modern SDKs like App Inventor make the
programming of such Apps possible in secondary education. Creativity can be an
adequate guide for such learning of programming. Developers of Scratch already
emphasize this idea: Programming serves primarily as a tool for personal expression.
Hereby students acquire “digital literacy” and skills that are essential for taking part in
the so called creative society [29]. The transfer of a creative understanding of
computer science to parents and friends may offer the chance to improve the common
understanding of computer science as boring and uncreative. This could also lead to
an increased interest in the subject in schools and universities.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fun

Unde
rst

an
din

g

Int
ere

st

Crea
tiv

ity

Im
pres

s

Dive
rse

 Solut
ions

Exp
erim

en
tin

g

Part
icip

ate

Dist
rac

ted

A
B

Computer scientists and teachers of computer science need to verify if the creative

perspective of computer science meets their understanding of the field. Based on
existing research the possibilities predominantly offered by software development
were described. Nevertheless computer science offers many other options for
applying creativity in the classroom. With just a bit of creativity at the teachers’ side
it is not hard to transfer the ideas mentioned in this article to many other learning
activities in the computer science classroom.

References

1. Runco, M.A., Creativity : theories and themes ; research, development, and practice.
2007, Amsterdam [u.a.]: Elsevier. XI, 492 S.

2. Boden, M.A., The creative mind: myths & mechanisms. 1990, London: Basic Books.
3. Runco, M.A. and I. Chand, Cognition and Creativity. Educational Psychology

Review, 1995. 7(3): p. 243-267.
4. Kaufman, J.C. and R.J. Sternberg, Creativity. Change: The Magazine of Higher

Learning, 2007. 39(4): p. 55-60.
5. Ruscio, J. and T.M. Amabile, How does creativity happen?, in Talent Development,

N. Colangelo and S.G. Assouline, Editors. 1996, Ohio Psychology Press: Dayton,
OH.

6. Lakhani, K. and R. Wolf, Why Hackers Do What They Do: Understanding
Motivation Effort in Free/Open Source Software Projects, in Perspectives on Free
and Open Source Software, J. Feller, et al., Editors. 2005, MIT Press. p. 3-22.

7. Luthiger Stoll, B., Spass und Software-Entwicklung: Zur Motivation von Open-
Source-Programmierern. Dissertation. 2006, Zürich: Universität Zürich.

8. Romeike, R., Kreativität im Informatikunterricht. 2008, Universität Potsdam:
Potsdam.

9. Csikszentmihalyi, M., Flow : The psychology of optimal experience. 1990, New York
u.a.: Harper [and] Row.

10. Scragg, G., D. Baldwin, and H. Koomen, Computer science needs an insight-based
curriculum, in Proceedings of the twenty-fifth SIGCSE symposium on Computer
science education. 1994, ACM Press: Phoenix, Arizona, United States. p. 150-154.

11. Hill, A.M., Problem solving in real-life contexts: An alternative for design in
technology education. International Journal of Technology and Design Education,
1998. 5(3): p. 1-18.

12. Gu, M. and X. Tong, Towards Hypotheses on Creativity in Software Development.
Lecture Notes in Computer Science, 2004. 3009: p. 47-61.

13. Romeike, R. Applying Creativity in CS High School Education - Criteria, Teaching
Example and Evaluation. in 7th Baltic Sea Conference on Computing Education
Research (Koli Calling 2007). 2008. Koli National Park, Finnland: Conferences in
Research and Practice in Information Technology.

14. Lewandowski, G., E. Johnson, and M. Goldweber. Fostering a Creative Interest in
CS. in SIGCSE '05. 2005. St. Louis, MO.

15. Long, J., Just For Fun: Using Programming Games in Software Programming
Training and Education. Journal of Information Technology Education, 2007. 6: p.
279-290.

16. Romeike, R. Applying Creativity in CS High School Education - Criteria, Teaching
Example and Evaluation. in the 7th Baltic Sea Conference on Computing Education
Research, Koli Calling. 2008. Koli, Finnland.

17. Lewandowski, G., E. Johnson, and M. Goldweber. Fostering a Creative Interest in
Computer Science. in SIGCSE '05. 2005. St. Louis, MO.

18. Meisalo, V., E. Sutinen, and J. Tarhio. CLAP: teaching data structures in a creative
way. in Proceedings of the 2nd conference on Integrating technology into computer
science education. 1997. Uppsala, Sweden.

19. Peppler, K.A. and Y.B. Kafai, Creative Coding: Programming for Personal
Expression. 2005.

20. Resnick, M., Rethinking Learning in the Digital Age, in The Global Information
Technology Report: Readiness for the Networked World, G. Kirkman, Editor. 2002,
Oxford University Press: Oxford. p. 32-37.

21. Wilson, B.C., A study of learning environments associated with computer courses:
can we teach them better? 2004. 20(2): p. 267 - 273.

22. Mittermeir, R., Informatik-Unterricht: Bastel-Unterricht, eine intellektuelle
Herausforderung oder "Preparation for the information-age". Medienimpulse, 2000.
9/33: p. 4-11.

23. Sweeney, R.B., Creativity in the Information Technology Curriculum Proposal, in
Proceedings of the 4th conference on Information technology curriculum. 2003:
Lafayette, Indiana, USA. p. 139-141.

24. Guzdial, M. and E. Soloway, Teaching the Nintendo generation to program.
Commun. ACM, 2002. 45(4): p. 17-21.

25. Van Dyke, C., Taking “computer literacy” literally. Communications of the ACM,
1987. 30(5): p. 366-374.

26. Knobelsdorf, M. and R. Romeike. Creativity as a Pathway to Computer Science. in
13th Annual Conference on Innovation and Technology in Computer Science
Education (ITICSE 2008). 2008. Madrid: ACM Press.

27. AAUW, American Association of University Women, Tech-Savvy: Educating Girls
in the New Computer Age, ed. A.A.o.U. Women. 2000, Washington, DC: American
Association of University Women.

28. Papert, S. and I. Harel, Situating Constructionism, in Constructionism, S. Papert and
I. Harel, Editors. 1991, Ablex Publishing: Norwood, N.J.

29. Resnick, M. Sowing the Seeds for a More Creative Society. in Learning & Leading
with Technology, International Society for Technology in Education (ISTE). 2007.

30. Romeike, R. Where's my Challenge? The Forgotten Part of Problem Solving in
Computer Science Education. in 3rd ISSEP Intern. Conf. on Informatics in Secondary
Schools - Evolution and perspectives, Torun, Polen 2008. 2008.

31. Glass, R.L., Software creativity 2.0. 2006, Atlanta: developer .* Books.
32. Leach, R.J. and C.A. Ayers. The Psychology of Invention in CS. in 17th Annual

Workshop of the PPIG. 2005. Univ. of Sussex, Brighton UK.
33. Saunders, D. and P. Thagard, Creativity in Computer Science, in Creativity across

domains: Faces of the muse, J.C. Kaufman and J. Baer, Editors. 2005, Lawrence
Erlbaum Associates: Mahwah, NJ.

34. Margolis, J. and A. Fisher, Unlocking the Clubhouse: Women in Computing. 2002:
MIT Press.

35. Rich, L., H. Perry, and M. Guzdial, A CS1 course designed to address interests of
women, in Proceedings of the 35th SIGCSE technical symposium on Computer
science education. 2004, ACM Press: Norfolk, Virginia, USA. p. 190-194.

36. Barker, L.J., K. Garvin-Doxas, and E. Roberts, What can computer science learn
from a fine arts approach to teaching? SIGCSE Bull., 2005. 37(1): p. 421-425.

37. Frenkel, K.A., Profiles in computing: Brian K. Reid: a graphics tale of a hacker
tracker. Commun. ACM, 1987. 30(10): p. 820-823.

38. Noble, J. and R. Biddle. Notes on Postmodern Programming. in ACM conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA).
2002.

39. Lammers, S., Programmers at work: interviews. 1986, Redmond, Wash: Microsoft.
385 S.

40. Littler, J. Art and Computer Programming. 2005 [cited 28.04.2008]; Available
from: http://www.onlamp.com/pub/a/onlamp/2005/06/30/artofprog.html.

41. Curtis, B., et al. Empirical Studies of the Design Process. in Second Workshop on
Empirical Studies of Programmers. 1987.

42. Romeike, R. Three Drivers for Creativity in Computer Science Education,. in IFIP-
Conference on "Informatics, Mathematics and ICT: a golden triangle". 2007. Boston,
USA.

43. Knuth, D.E., Computer Programming as an Art. Communications of the ACM, 1974.
17(12): p. 667 - 673.

44. Shneiderman, B., et al., Creativity Support Tools. Workshop Report on Creativity
Support Tools. 2005, Washington, DC: National Science Foundation.

45. Lubart, T., How can computers be partners in the creative process: classification and
commentary on the special issue. Int. J. Hum.-Comput. Stud., 2005. 63(4-5): p. 365-
369.

46. Shneiderman, B., Creativity support tools: accelerating discovery and innovation.
Commun. ACM, 2007. 50(12): p. 20-32.

47. Romeike, R., Softwaretools für kreatives Lernen im Informatikunterricht.
Tagungsband zur GI-Fachtagung Informatik und Schule INFOS Berlin, 2009.

48. Maloney, B., Kafai, Rusk, Silverman, Resnick, Scratch: A Sneak Preview. IEEE
Computer Society, 2004: p. 104 - 109.

49. Cordova, D. and M. Lepper, Intrinsic Motivation and the Process of Learning:
Beneficial Effects of Contextualization, Personalization, and Choice. Journal of
Educational Psychology, 1996. 88(4): p. 715-730.

Implementation of the new Federal State standard of
primary education: the first year results on the example

of the course “Mathematics and Informatics”

Tatiana Rudchenko

Dorodnicyn Computing Centre of Russian Academy of Sciences, 40 Vavilova, Moscow,
Russia

rudchenko1@yandex.ru

Abstract. The article concerns the integrated course “Mathematics and
Informatics” by Semenov A.L. and Rudchenko T.A. The authors state the
importance of the course as the “launch pad” for ICT-competence formation,
and a natural basis for integration of all subjects in the respect of the ICT tools
implementation. The authors describe the basic methodological principles and
educational aims of the course, various forms of disciple activities in the course,
as well as the possibilities of the site which organizes the work of 180 pilot
schools using the course. The authors state the advantages of the course and
mark positive results of the course implementation in the 1-st grade curriculum
based on the references of the teachers who took part in this project.

Key words: metasubject educational results, ICT-competence formation,
integrated course “Mathematics and Informatics”, Federal State standard of
primary education.

The new Federal State Educational Standard for Primary Education (FSES) declares
metasubject and subject results closely connected with “Informatics” subject matter.
Such results, in particular, encompass: the use of ICT devices for communicative and
cognitive tasks; the use of different means of data search, collection, and processing;
the skill of operating within the primary educational information milieu; the mastering
of basic metasubject (informational) concepts; the acquiring of algorithmic thinking
basics; the acquiring of initial notions of computer literacy etc.

It seems most productive to learn Informatics at primary school together with
Mathematics within the framework of an integrated course “Mathematics and
Informatics”. As far as Mathematics and Informatics (as disciplines) use common
conceptual, logical and algorithmic bases, the integration of these two subjects in
primary school enables: to save class time, to highlight, naturally enough, the
interdisciplinary ties and links, to show kids the instruction matter from different
angles including the demonstration of most general information methods of doing
sums.

So far as the majority of subject and metasubject results, planned within the course
“Mathematics and Informatics”, feature the concept of ICT-competence, the course
itself presents the launch pad for ICT-competence formation. This fact, in its turn,

preconditions natural integration of all subjects on the basis of the course in the
respect of the ICT tools implementation.

The course called “Mathematics and Informatics” (A. L. Semenov et al.) is being
elaborated within the framework of the pilot project of introducing FSES on the
platform of 180 Moscow schools. In accordance with FSES the developing course
“Mathematics and Informatics” presupposes systemic and pragmatic approach aiming
at students’ age consideration and formation of individual instruction paths. It
includes independent learning, research and practical activities understandable and
attractive for students. The whole variety of disciple activities within the framework
of the course “Mathematics and Informatics” may conditionally fall into four groups:
work with the textbook, project activity, computer work, subject games.

The work with the textbook is organized so as to give 1st year students freedom in
doing it in class almost without any assistance from the very beginning, so that the
teacher can concentrate her help on individualized ‘trouble-shooting’. This is attained
with the predominant use of graphic explanations, exhaustive, though not large,
instruction texts and explicitly introduced game rules. Under the game rules we mean
the description of all notions (arrangements), which are exploited in task formulation.
To maximally facilitate new material (independent) studying by kids all new concepts
are introduced in the form of graphic examples, while the verbal texts serve to
comment illustrations. As the textbook contains all information necessary for task
solving and formalization, the students regularly have no need to run for any external
back up. The work with the textbook in itself is targeted on information competence
basics formation (the ability to operate due to the system of rules and restrictions,
including those contained within descriptions and instructions; the ability to
understand information, displayed in different forms (texts, graphics, tables, charts,
schemes); the ability to select proper information and neglect the unnecessary items
and so forth). In the course of work with the textbook mastering of basic metasubject
concepts and attainment of the majority of subject results come gradually.

The project activity conceives of tasks meaningful for kids and utilizes information
methods and tools, including the ICT. The project task has research, practical,
creative touch and develops communication, managerial and leadership skills (the
ability to distribute responsibilities amongst several members of the group, the ability
to negotiate, coming to an agreement with each other, and so forth).

Subject games include manipulating with objects (LEGO bricks, counting aids,
bead strings etc.) and also playing parts, including role model ones, with mathematic
bias. All this permits to uncover the course matter in accord with age of the primary
school students and promotes communicative competence formation and further
interest in the subject.

Computer part of the course presupposes several activities: computer lesson task
solving, work with simulators, games, communication via the course site.

The work with the computer task complex proposes a consecutive solution of
computer lessons based on course topics. At the same time, computer tasks support
only those course issues, where the computer use results in clear technological and
methodical gain. In the course kids get acquainted with main text and graphic editing
program tools, improving their computer literacy. Students can tackle computer
lessons independently for all tasks have maximally friendly interface, in particular, all
texts have sound versions.

Working with simulators, used for developing technical skills (mainly
computational) and solving various entertaining tasks and those with practical and
game content (for instance, “dress the doll” or “ drive a car through the maze”), backs
up backward students and stimulates the leaders.

The work of the pilot schools is organized on the site nachalka.seminfo.ru in the
Moodle environment. Our “Mathematics and Informatics 1st Form” course is
represented on this site by three courses (three parts: 3-11, 12-22, and 23-33 weeks).
Every teacher gets his/her own course space on the site where he/she works only with
his own class recording all students’ activities. The results of kids’ work with a
computer are saved and the teacher not only examines and evaluates kids’ works but
also comments on solving the whole lessons and individual tasks. The site, besides
holding computer lessons complexes, simulators and games, also contains pages from
the textbook or project notebook for each lesson, where all texts have sound, which is
convenient for kids with poor reading skills. The site gives various opportunities to
kids to converse with the teacher and with each other (chats, forums, short message
exchange and the like). The teacher can place his or her own methodic materials in
the personal site space, thus enriching kids’ education milieu and individualizing it.

Due to teachers’ estimation (first year intermediate outcome) the majority of
objectives outlined by the course “Mathematics and Informatics” turn to be attainable.
The manual is available for independent work, and the teacher manages to use
different manipulative handlers and run mini-projects and games during the lesson. A
very simple description of the first course topics enables kids to feel free working
independently and meeting game rules. The further growth of task and topic difficulty
goes on almost inconspicuously. The majority of students master the proposed subject
matter.

Teachers especially mark changes happened with the appearance of computers and
the site in their work with parents. The latter follow their kids’ work on the site and
eagerly communicate with teachers in forums. For some technical reasons pilot
schools were provided with computers only in the middle of the academic year,
henceforth, the computer part of the course was used by the students mainly at home.
Parents’ involvement in the work on the site intensified their cooperation with the
teacher. There appeared the opportunity to discuss various issues, which had been
omitted before for the lack of time during rare parents meetings.

According to intermediate working outcomes evaluation in 2010-2011 academic
years the course got unanimous acclaim from the teaching staff and administration of
the pilot schools. The teachers hope to continue educating students with the help of
this program.

References

1. Semenov A.L., Rudchenko T.A.: Mathematics and Informatics. 1st Form. Manual-notebook
for Institutions of General Education. In 5 Parts. Part 1 (Математика и информатика. 1
класс. Учебник-тетрадь для общеобразоват. учреждений. В 5 частях. Часть 1).
MCCME publishers, Institute of New Technologies, Moscow (2010).

2. Semenov A.L., Rudchenko T.A.: Mathematics and Informatics. 1st Form. Manual-notebook
for Institutions of General Education. In 5 Parts. Part 2 (Математика и информатика. 1

класс. Учебник-тетрадь для общеобразоват. учреждений. В 5 частях. Часть 2).
MCCME publishers, Institute of New Technologies, Moscow (2010).

3. Semenov A.L., Rudchenko T.A.: Mathematics and Informatics. 1st Form. Manual-notebook
for Institutions of General Education. In 5 Parts. Part 3 (Математика и информатика. 1
класс. Учебник-тетрадь для общеобразоват. учреждений. В 5 частях. Часть 3).
MCCME publishers, Institute of New Technologies, Moscow (2010).

4. Semenov A.L., Rudchenko T.A.: Mathematics and Informatics. 1st Form. Manual-notebook
for Institutions of General Education. In 5 Parts. Part 4 (Математика и информатика. 1
класс. Учебник-тетрадь для общеобразоват. учреждений. В 5 частях. Часть 4).
MCCME publishers, Institute of New Technologies, Moscow (2010).

5. Semenov A.L., Rudchenko T.A.: Mathematics and Informatics. 1st Form. Manual-notebook
for Institutions of General Education. In 5 Parts. Part 5 (Математика и информатика. 1
класс. Учебник-тетрадь для общеобразоват. учреждений. В 5 частях. Часть 5).
MCCME publishers, Institute of New Technologies, Moscow (2010).

6. Semenov A.L., Rudchenko T.A.: Mathematics and Informatics. 1st Form. Project Notebook
for Institutions of General Education (Математика и информатика. 1 класс. Тетрадь
проектов для общеобразоват. учреждений). MCCME publishers, Institute of New
Technologies, Moscow (2010)

7. Semenov A.L., Rudchenko T.A., Posicelskaya M.A., Posicelsky S.E., Soprounov S.F.,
Soprounova N.A., Hovanskaya I.A.: Mathematics and Informatics. 1st Form. Computer
integrated course. In 3 parts. Weeks 3-11, 12-22, 23-33 (Математика и информатика. 1
класс. Интегрированный компьютерный курс в 3 частях. Недели 3-11, 12-22, 23-33),
http://nachalka.seminfo.ru/course/category.php?id=240

The EasyLogo paradigm

Maria Skiadelli

National Technical University of Athens, 15780 Athens Greece

skiadelli@gmail.com

Abstract. This paper presents a series of educational activities implemented in

classroom with children between 9 and 12 years old in a Greek primary school,

during a trimester period. It tries to describe in detail the educational scenario

that was followed in order to make children acquire basic programming skills

using the EasyLogo environment. It mainly focuses on aspects like the teaching

path that was followed, the classroom set up, the problems faced by the teacher

and the cognitive difficulties of the children. Finally, some samples of the

children‟s work are also presented. The paper is not meant to present however,

the results of a research experiment, since none of the educational research

methodologies was followed, but to report the classroom experience from the

teacher‟s point of view and to share it with other teachers and practitioners [9].

Keywords: Logo, computer literacy, didactics of informatics, young children

1 Introduction

During school year 2010-2011, a pilot program was implemented in Greece for 800

primary schools, extending the basic curriculum to include new innovative subjects,

amongst others one called Information and Communication Technologies (ICT),

mostly focusing on informatics education. In order to implement this program the

Greek Ministry of Education had to move temporarily specially trained teachers of

Informatics from the secondary level to the primary level of education. The teachers

were given enough autonomy to implement their own curriculum and methods in a

certain given framework of teaching instructions suggesting Logo as the appropriate

language for teaching basic programming skills to young children aged between 10

and 12 years old. Since no reference to a specific environment or tool was made, the

writer of this paper used the EasyLogo environment [1] in one of the schools of the

pilot program after localizing it in Greek. Here it should be mentioned that children

that participated in this experiment had no previous knowledge of programming at all

and had rather limited experience with computers in general, mostly coming from

playing computer games and surfing the Internet.

 The educational activities that will be presented took place in a three month

period for two teaching hours per week. The work started with children of the 3
rd

, 4
th

and 5
th

 grade but only the children of the fifth grade managed to reach the last set of

activities. The two others stopped earlier for reasons to be explained later.

Fig. 1. The EasyLogo environment

2 Classroom set up and previous knowledge

The work with EasyLogo started after the first school trimester which was devoted to

familiarize the children with basic computer literacy skills like typing and mouse

moving, basic operation system handling, document editing and some very simple

internet concepts.

The courses took place in a computer lab of 12 personal computers. The children

had to work together in groups of 2 or 3. The choice of partners was up to them, but it

had to remain unchangeable throughout a series of activities, unless a major

collaboration problem occurred between the members of a group.

In all the activities, children were given some degrees of freedom; they did not

have simply to follow and execute commands (the use of worksheets was avoided for

this exact reason) but they had rather left to make their own choices and take

decisions in a well-defined framework of action set by the teacher. As a result the

outcome of their work considerably varied. By letting the children take decisions

about their own work and actions is important for it strengthens their autonomy and

self-esteem and also helps them understand two basic principles of real life: a problem

may have many different solutions and different people view things in different ways.

3 The teaching path

Each series of activities described below is comprised by a number of simpler

activities which will be may be also referred later as steps. According to well

established learning design methodologies [2] all these activities together comprise a

unified Unit of Learning (UoL) [3]. Activities are based on the constructivist theory

[4] and constructionism approach [5][6][7] and some of them, especially the most

advanced ones, on situative learning principles [8]. Every series of activities, as well

as the whole UoL, possess a scalable degree of difficulty, abstraction and complexity

and they build upon each other. They form a continuous teaching path which is

characterized by uniformity in terms of educational goals and teaching

methodologies.

Each of these activities may last for one or more than one teaching hours or

classroom sessions of 45 minutes. During each session a certain teaching procedure is

followed: reviewing of previously acquired knowledge, setting a new problem that

requires the use of new (more advanced) knowledge, experimenting with newly

acquired knowledge together with problem solving techniques and finally relaxation

and play.

At the end of each series of activities, children take screenshots of their work they

save it in a file and they write a small report of what they did and how they did it and

of what they think that they have learned. This process helps them to reflect on their

work in a holistic way and become more conscious of the knowledge and skills that

they have used to accomplish their work.

3.1 Preliminary activities

The first series of activities is based on role playing techniques [9]. Programming is

introduced as a robot instructing technique i.e. you want a robot to do something for

you so you have to give the right commands telling it exactly how to do it. The robot

understands only a limited set of instructions “forward”, “left” and “right”. A child

volunteers to play the role of the robot and to be “programmed” by another child, its

“master”. A demo (by the teacher) is necessary so that the children can see the impact

of the commands to the robot‟s movement. At this step it‟s very important for the

teacher, to insist on the accuracy of the terminology used by the children. When one

kid starts giving instructions to his/her classmate, she/he must use the only the right

command, for instance “forward” and not “go forward” or just “go” etc. This is

necessary for helping children realize through experience the difference of the

communication languages between humans and between humans and the machine.

The term programming language is not used at this stage, but the children understand

that the language that a human uses to control a machine must be strict, formal and

unambiguous. After some examples with few pairs of volunteers, it‟s the right time to

mention for the first time the term “programming”, as an answer to the question:

“what is your classmate doing right now to that robot?” New terminology would

rather be introduced to young children in an experiential way and not by giving

formal definitions.

3.2 Game and role playing (Activity mode)

The second series of activities is carried out using the “Activity mode” of the

EasyLogo environment. That is a major step for children of young age since they have

to move from the physical-real world to the virtual world of the computer, which

should be handled with care. They are not supposed to give verbal commands to their

fellow classmate who plays the robot role anymore; instead they have to learn to

instruct a virtual entity in their computer by dragging the right command into a certain

area called the program area (fig. 1)1. To help them make this transition smoothly,

we take care so that the repertoire of commands of both situations remains

unchanged.

 By using the Activity Mode of the Easy Logo environment students can be

engaged into imaginary situations like “the bee that needs to visit the flowers”, “the

car that runs a race”, etc. These are in fact little microworlds [10] constructed by

using various background images and an entity that represents the pen-turtle object

that can move over this background. While children navigate through these

microworlds, they fill like navigating through the different levels of a computer game,

which makes them very enthusiastic2.

The series of activities described in this section focus mostly on the development

of algorithmic and design skills as they are basically based on simple graph solving

problems [1]. Most of the children find it fairly easy to drive their entity (the “car” or

the “bee”) as required. However, when one looks more carefully, he/she will notice

that most of them do it in a rather ad-hoc way. Look at the following example (fig

2a): the bee moves to whatever direction is possible at each step and at the next step

the child just tries to correct its way by moving it towards the right direction. Here the

teacher needs to make an important intervention so that children pay attention to the

design phase of their entity‟s movement. In fact they should get used to make their

entity move according to a predefined path and not by chance. They should be urged

to design this path beforehand by drawing it (electronically or on a piece of paper) or

even by negotiating it with their group partners (or both). Designing the path before

starting dragging commands into the program area is not only a good design practice;

it strongly enhances their algorithmic skills and makes them much more conscious of

the programming process.

At this step there is a good opportunity also for the teacher of informatics to talk

about the notion of “equivalency” in programming, since there may be more than

solutions to a given problem, given by the groups of the classroom.

1 That fact that the commands can be drawn and not written helps them avoid typing and

syntactical errors and at the same time is quite similar in a way to giving verbal commands.
2 Some of these microworlds are found in the original EasyLogo package, or can be constructed

by the teacher or activity maker.

Fig. 2. Ad-hoc movement path

Fig. 3. Pre-designed movement path

Last thing that a teacher should try to help children understand at this step is the

idea of good and bad programming practices and how they can be enforced by the

application of certain rules. The teacher with the help of the children can elaborate a

set of rules, the rules of “good” programming. A rule for instance can be “never use

two times the same command successively” or “never use an angle greater than 180
ο

(for left and right)”. Children then should be urged to make the necessary corrections

to their programs so that they conform to these rules. Moreover, making corrections to

their own programs is a highly reflective process that helps them become more and

more conscious of their newly acquired programming skills.

3.3 The classical Logo square

The third series of activities is based on the creation of the classical Logo square and

is characterized by the transition from the Activity to the Creative mode of the

EasyLogo environment. The children have to move to a more abstract universe where

there is no graphic background, just a simple white paper, and their little entity has

now been transformed to a simple small triangle. Since the degree of abstraction in

the current series is considerably higher than previously, this change should be again

handled with care in order not to turn disappointing for children and hinder their

cognitive processes.

Taking that into account, it was found that it would be more suitable to implement

the first activity of the series again in the Activity mode, rather than going directly to

the Creative mode. So being in the Activity mode children are asked to follow the

trace of a pre-drawn square path by dragging the right set of commands as usual3.

Children at this step have to notice the repetitiveness that appears in their program

and to find out which is the pattern that is repeated. That is crucial for the next steps

of the activity and the teacher should employ various techniques in order for them to

achieve it. One useful technique for instance is that he/she starts reading the

commands of the program that create the square while the children keep their eyes

closed. This helps them to discover the sound pattern that is repeated and memorize it

more easily. Memorizing the code is also important for a reason that will become

obvious in the next step.

So the next step (better take place in the same teaching session as the previous one)

is to move to the Creative Mode and start creating the square again by dragging the

right set of commands into the program area. They have to do it all alone and they are

considerably helped by the memorization of the repeating part that took place in the

previous step.

Once they manage to write the program that creates the square, it‟s time to start

making some transformations of this square. One may think of many possible

transformations: a square of double (or half) side length, a square that is turned to a

rectangle etc. These transformations are really very amusing and the children that

should be let free to play and experiment with their program. By playing, they

become more conscious of the fact that the drawings on their screen is the result of

the movement of the small triangle entity and they change according to the commands

3 Although the solution of this problem is as well-known repetitive, the repeat command is not

yet mentioned at this step.

that they use to drive this entity. As soon as they realize this, they are ready to move

to the next series of activities.

3.4 Creating interesting shapes

The next series of activities was the last for the children of younger ages (3
rd

 and

4
th

 grade). It seemed that they got cognitively overloaded at this point. This was not

only due to the use of the new tools (commands, programming environment, etc.) that

they had to learn how to handle, but mostly because of the energy and cognitive

power required from them in order to get used to a new philosophy of thinking and

working, that needs continuous interaction with the machine . Since this was their

very first experience with programming, it is rather justifiable that they reached their

cognitive and physical limits rather early. Perhaps next year things will be much

easier, since they will know what to expect.

 The first step of the activity series is as usually based on the last step of the

previous one. Let‟s recall that this was the free creation of a square and its various

transformations. Now the kids are asked to start changing the colors of the four sides

of the square. The new command Pen colour is introduced that changes the color of

the pen. This task it turned more difficult, especially for the younger children, than

first appeared. It seemed rather awkward for them to learn that they had to change the

color of the pen just before drawing the line and not after the line was drawn, possibly

because of the habits that they had acquired from commonly used painting programs,

yet this is a hypothesis that needs to be checked. The right use of the Pen colour

command was not the only difficulty at this step. The solution to the problem of “how

to draw a colorful side square” is obviously to insert some new commands between

the lines of the code of the black square. That however seemed hard for them to

realize and had to be explained over and over again. Most of them tried to solve the

problem by drawing a second square just below the lines of code that draw the initial

black square and not by altering this code. Another similar activity that a teacher can

use at this point to help them practice more on the insertion of commands between the

lines of an existing piece of code is to make a square with sides of different

thicknesses. In order to do that, children have to use a new command called Pen

width. However it seems that the introduction of this new command does not pose a

significant problem to them, since its functionality is very much similar to the Pen

colour command.

The next activity is for playing and relaxation. Kids are asked to combine different

thicknesses and colors for the four sides of the square, to create interesting square

shapes. They may even change the size of the square or transform it to a rectangle.

This activity enforces creativity and imagination and it is ideal to be the final activity

for younger children (between 9 and 10 years old), because it gives to them a light

and joyful feeling about programming.

The final step of this series is to ask them to fill the square with a color of their

choice and then with a random color. The purpose of this activity is twofold: first to

learn how to use the new command called Fill that fills a closed shape with color and

second to get introduced to the idea of randomness, which is of great importance to

computing in general. The teacher at this point has to make the children notice what

happens when they choose the “random” attribute for the Fill command and then

press the Run it again button. Children should be urged to express their own

hypothesis, discuss about it with peers and check its correctness by a trial and error

procedure. Once they are able to understand in detail what happens when they press

the Run it again button, they are not only able to answer to the question “why the

color changes each time the program is executed” but more importantly they become

more conscious of the execution process of a program and its consequences.

3.5 Drawing a train

After drawing the basic square and playing with it by changing sizes, colors, and

thicknesses, etc. children are ready to make a different kind of transformation that will

turn the abstract square to an object of the real world: a wagon! That is something

quite easy for them: by just adding two dots at the bottom side of the square, the latter

all of a sudden turns to a small train wagon. The problem that the kids have to solve

this time is how to make a train by using this simple wagon.

This is the right time for the teacher to introduce the Add new procedure command

with the symbol + on the Command panel. By pressing the + button, children find

out, that they are able to create a new command on the command panel that can keep

for later use in a new program. The newly created Draw wagon command can be

dragged into the program area just like the other commands of the enviroment. The

way that the procedure creation is handled in EasyLogo, is so simple, and

straightforward that allows most of the children to make their own procedures without

nearly any help. Moreover, it helps them understand very intrusively the main

purpose of the procedure mechanism in programming which is to create reusable

pieces of code. Understanding the procedure mechanism is a major step for children‟s

programming mastering skills and the teacher should devote 2 or 3 teaching sessions

to let them practice with it.

The last step of this activity series is the addition of some more extra wagons to the

previously created train. Although children initially find it easy (and amusing) to add

more wagons by dragging their new command into the program area, they start

getting bored after the fifth or sixth wagon. It is this boredom that the teacher should

take advantage of, in order to introduce the Repeat command. First he/she should urge

them to find which part of their code is repeated. Although this may seem trivial for

an adult, for a child it is not. Pattern recognition is a basic mathematical skill that has

not yet been entirely achieved by children of younger ages. In fact, locating the part

of the code that is repeated is much more difficult than learning how to use the Repeat

command itself. Once they find the repeating part, it is fairly easy to insert it in a

repeat structure and start playing with the “times” argument, which makes them very

enthusiastic. In order the teacher to help them practice more with the use of the

Repeat command, he/she can ask them to rewrite the basic square code of the

previous sections or let them create interesting shapes (polygons and others) by just

using this new command in an ad-hoc manner.

Fig. 4. The graphical result of the “Drawing the train” series of activities

3.6 Decorative motifs or let’s be creative

The last series of activities is meant to summarize all the previously acquired

knowledge and skills and at the same time gives the opportunity to the children to

explore new ways of expressing themselves and make their own creations. It is

mostly based on situative learning rather than on problem solving techniques; children

are not asked to solve specific problems posed by the teacher (which was a common

practice in all previous series of activities) but to get themselves involved in a real –

like, yet imaginary situation4.

The teacher starts this series by showing a collection of geometrical decorative

motifs that he/she can find on the Internet. Since the experiment took place in a Greek

public school, it was found most appropriate to focus this demonstration on the most

common ancient Greek motif called meandros. This is a geometrical motif that is still

widely used in modern times and by other civilizations, as well. What is important at

this step is the children to see that meandros, like most other geometrical motifs, is

made by the repetition of a simple pattern. The teacher shows many examples of

different forms of the meandros motif and asks the children to recognize which is the

part that is repeated each time. Then he/she sets up the learning situation: the children

should imagine that they are modern designers that they have to create modern

decorative motifs using not a drawing tool but a programming environment like

EasyLogo. They are advised to start by creating a simple motif and then produce more

complex ones by repeating it in imaginative ways. There are no limitations or

4 The activity was inspired by the African motifs scenario presented in [4]

restrictions to this process, as long as they use proper programming techniques and

their own aesthetical taste.

This approach liberates creative power; kids feel free to experiment and play, try

out their newly acquired programming skills and see where they can lead them. They

work as usually in groups and the results of their work may considerably vary as

shown in fig. 5.

If they are not aesthetically satisfied with the result of their work produced by

programming means in EasyLogo, they can use a paint tool to add some more features

to their motifs for instance to add more colors in certain areas of their motif, delete

certain areas, etc. When finished, members of each group, have to think and discuss

about the objects or surfaces that would be mostly suitable to be decorated with their

motifs and send a relative post to the blog of their classroom. The post also contains

the images of the motifs as well as some details about how they got inspired for these

creations. Blog posts are a very nice way to share thoughts and experience with peers.

By looking at the work of others, children have the chance to reflect about their own

work as well, get more ideas, make comparisons, give their opinion and get highly

involved to the activity that took place. The whole process of blogging is very fruitful

and helps the children also get used to the idea of publicly share the result of their

work.

4 Conclusions and further work

The work presented in this paper is not the result of a research experiment. The

reaction of the children, although has not been methodologically measured, can be

considered as positive and the results of their work is a good indication for that. For

them the whole experiment was a complete novelty, not only because of the new

knowledge domain that they were approaching but also because of a whole new set of

principles of teaching that were applied in classroom. The whole learning experience

was set up in such a way to urge them be confronted with innovation, creativity and a

sense of freedom. Their self- esteem was also considerably boosted, by feeling proud

of the quality of their work and by letting them take their own decisions. It‟s

important to say at this point that very often during this experiment they kept on

asking “what all this has to do with informatics?” And when they were asked (as an

answer to this question) “what does informatics means to you?” they mentioned the

use of the office tools (word, powerpoint, etc. and the Internet searching) although in

fact they started to realize their idea about informatics is rather vague. This is

something should be thoroughly considered by the researchers, as it might have both

negative and positive results on the didactics of informatics at school.

Although kids considered the experience in general as positive, it would be rather

difficult to prolong the activities time duration for more than 10-12 weeks. That

possibly will have a negative impact on kids and it would reverse the results that they

have achieved so far. In fact the younger the children, the more often one has to

change tools and activities. But this is of course a hypothesis that needs to be

carefully studied. As a proposal for further work, I would suggest that children should

Fig. 5. Decorative motifs of young designers created with EasyLogo

be involved in more meaningful (for them) activities, like for instance the creation of

an interactive board game. This kind of activities take advantage of EasyLogo‟s

newly added animation (they were not present when this experiment took place).

These are more advanced activities in terms of algorithmic and programming skills

but also in terms of rulemaking and design issues that they can serve as an advanced

series of activities with the EasyLogo environment that follow the ones presented in

this paper.

Finally in the future, it would be interesting to implement a systematic research

that measures the educational result of the activities presented with regard to

children‟s acquired skills, knowledge and attitudes towards programming.

References

1. Salanci, L.: EasyLogo – discovering basic programming concepts in a constructive manner.

In: Constructionism 2010, European Logo Conference, Paris (2010).

2. Beetham, H.: An approach to learning activity design. In Beetham, H. and Sharpe, R. (eds.)

Rethinking Pedagogy for a Digital Age pp. 26-40, Oxford, RoutledgeFalmer (2007).

3. Agostinho, S., Bennet S., Harper B., Lockyer, K.: Handbook of Research on Learning

Design and Learning Objects: Issues, Applications and Technologies, Hersey, PA, IGI

Global (eds) (2008).

4. Piaget, J. Science of educations and the Psychology of the child. New York: Orion Press

(1970).

5. Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York

(1980).

6. Papert, S.: The Children‟s machine, Rethinking School in the Age of the Computer. Basic

Books, New York (1993).

7. Kafai, Y. & Resnick, M.: Constructionism in practice: Designing, thinking, and learning in a

digital world. Mahwah, NJ: Lawrence Erlbaum Associates (eds.) (1996).

8. Brown, J.S., Collins, A., Duguid, P.: „Situated cognition and the culture of learning‟ in

Educational researcher, 1989, 18 (1): 32–42 (1989).

9. Van Ments, M.: The Effective Use of Role-Play: Practical Techniques for Improving

Learning, 2nd Ed., Kogan Page, London (1999)

10. Adamson, R., Hoyles, C., Noss, R.: Rethinking the Microworld Idea. Journal of

 Educational Computing Research, 27 (2002).

Informatics Classes in Austria’s

Lower Secondary Schools – a Survey

Peter Smejkal1, Monika Di Angelo1

1 Vienna University of Technology, Institute for Computer Aided Automation,

Treitlstrasse 1/183, A-1040 Vienna, Austria

monika.diangelo@tuwien.ac.at

Abstract. At present, the curriculum for Austria's lower secondary schools does

not comprise informatics as a subject. This unfortunate situation led to a wide

range of informatics classes both, optional and mandatory, at the lower

secondary level, that were established solely through the initiative of the

respective schools. These classes are offered in addition to the regular

curriculum, which is enabled by the (small) autonomous space for curriculum

design that the ministry grants its schools. In this work we present the current

status of offers for informatics classes in Austria’s lower secondary schools. In

particular, we are interested in what kind of topics are offered, how numerous

those offers are, and what the legal frame for this outside of curriculum classes

is. This study is based on data that was collected from the schools in June-

September 2010.

Keywords: Informatics classes, lower secondary school, survey

1 Introduction

The computer is a standard instrument in today's society which cannot be imagined

without it. This fact is hardly reflected in the national school curricula, though:

informatics lessons simply are not scheduled in the lower secondary school level in

Austria. Computer classes only appear in the curricula for upper secondary schools. If

a pupil decides to end the compulsory schooling with a polytechnic year, this is also a

decision for no computer classes at all. Despite this unfortunate situation, there is a

whole range of informatics classes at the lower secondary level, which are offered at

school, outside the regular curriculum.

In this paper we seek for answers to the questions: “What is the current status of

offers for informatics classes at the lower secondary level in Austria?” In particular,

we are interested in a) what kind of topics are offered, b) how numerous those offers

are, and c) the legal frame for outside of curriculum classes.

We first present a summary of recent studies with respect to informatics in

Austria’s schools. Then we briefly summarize the legal framework for classes which

are offered in addition to the regular curriculum. This is followed by a presentation of

data we collected from the lower secondary schools in Austria during June to

September 2010. The gathered information has been evaluated in regard to the legal

framework, to the single states, to the two types of lower secondary schools that exist

in Austria, and to the subjects of the classes.

2 Informatics in Austria’s Schools

Obligatory education standards for Austria in the area of informatics are not very

numerous. There are simply none for the general-education secondary schools (AHS).

Education standards were developed for the profession forming secondary schools

(BHS) in cooperation with the ministry. [1] comments that here “uncharted waters are

entered, because there are no approaches neither at the national nor at the

international level that can be adapted to the Austrian situation“.

After several years of fruitful discussion in the German-speaking countries the

“Gesellschaft für Informatik” (GI) finally “enacted” education standards for

informatics at school [9] in 2008 which unfortunately are not binding anywhere, yet.

According to [4] there seems to be quite a resistance in Austria towards the further

development of education standards since informatics is "already" a mandatory

subject in year 9 in the AHS. In this respect, Austria is far from putting the GI

education standards into action and no trend in this direction on the part of the

responsible ministry has been located either.

An investigation in the state Kärnten [10] evaluated, whether the goals of the state

standards for the lower secondary level (which were defined in the school year

2003/04) were accomplished and, after two years of informatics classes, how much

knowledge was still available in the following year (year 7). The study confirmed the

acceptance of the standards on the part of the teachers. However, the teachers were

unsure, whether the standards could be achieved in a one hour per week class. In

addition, it was confirmed that the informatics knowledge is lost, if the classes are not

continued in the following years.

In the state Vorarlberg, the basic informatics knowledge of year 6 AHS pupils has

been examined [5]. After completion of the one-year compulsory informatics class

most pupils could handle the desktop, however approximately a quarter of all pupils

had difficulties in copying files. Also, text editing was not accomplished without

difficulties by approximately half of the pupils. Only a quarter of the pupils were able

to handle standard presentation software without problems.

In a special issue of "CD Austria" [3] which is supported by the ministry (bm:ukk),

it was remarked that although the range of informatics classes increased in the AHS

within the last few years, the trend was more towards combined classes (like CAD)

and the integration of industry certificates (like ECDL, Cisco, MS IT-Academy). Half

of the investigated schools in the state Niederösterreich offered informatics classes.

Micheuz [7] evaluated the situation of the Austrian informatics education in year 9

via online questionnaires. The results show that due to the increasing school

autonomy the range of informatics classes is in permanent development, leading to

diverse school profiles. This results in a mismatch of knowledge among pupils of

different schools. Even within the same school the pupils’ informatics knowledge is

very uneven, more than a third of all pupils reach the end of the lower secondary level

without basic informatics training.

 Another evaluation [8] deals with the autonomous informatics offers of the AHS.

It is "based on elementary statistical data as well as the results of a national online

survey" and comes to the conclusion: Although there are some offers for informatics

classes at the lower and upper secondary level, these offers are highly unstructured,

unclear and very heterogeneous. Due to the missing education standards and the

unsatisfactory rooting in the curriculum, informatics education in Austria lacks clear

structures.

3 Legal Framework

In Austria the ministry (bm:ukk) issues curricula and sets the legal frame for

possible informatics classes. All following information is taken from the ministry’s

web site [2].

There are basically two possibilities for a school to establish informatics classes:

on the one hand, a few weekly hours (max. 5) can be dedicated to a freely eligible

school focus according to the "autonomous curriculum design" which the ministry

grants its schools since the school year 2003/2004. These school autonomous subjects

are obligatory for all pupils of this school (or this school branch), in this paper

referred to as “obligatory offers”. On the other hand, "electives" can be offered by the

school in a limited range (they are financed by the ministry). These electives are in

addition to the mandatory subjects and can be freely chosen (or not) by the pupils.

Electives are not restricted to informatics topics of course, but rather cover a wide

range of subjects (such as music, language, sports and many more).

The regulation of this design space for schools is found in the curricula [6] and

reads: The curriculum can be adapted through school autonomous subjects "under

consideration of the spatial, equipment and personnel conditions of the school" – in

other words, at no extra costs. Furthermore it is explicitly noted that for the lower

secondary level an informatics focus can be chosen "in the context of school

autonomous curriculum regulations".

In Austria there are two types of schools at the lower secondary level: the AHS

(“Gymnasien”) runs from year 5 to 12, thus comprising both, the lower and upper

secondary level. The HS (“Hauptschulen”) runs from year 5 to 8 and only comprises

the lower secondary level. Both operate with the same curriculum.

4 Data Collection and Evaluation

For data collection, firstly e-mail messages were sent out to all schools with a

lower secondary level, the HS and the AHS. Secondly, since the number of replies to

the e-mail messages was – as expected – very low, the web sites of all schools were

searched for information on informatics classes in form of obligatory offers and

electives. This method delivered by far the most data; there were hardly any schools

without an appropriate web site. Thirdly, some schools were contacted by phone to

further complete the data. In total, 1338 schools (271 AHS and 1067 HS) were

investigated [11].

4.1 Results for obligatory offers

The number of schools with obligatory offers of informatics classes (in the context

of the school autonomy) is already considerable in some states, although it varies

widely over the states. Fig. 1 shows the percentage of schools with obligatory classes.

The data was split up according to the two type of school of the lower secondary level

the “Gymnasien” (left bar) and the “Hauptschulen” (middle bar). The average for the

whole lower secondary (“Sek 1”, both school types put together) is indicated by the

right bar. It should be noted, that fig. 1 contains no information on the weekly hours

of the classes, nor on the year(s) in which the classes are held.

Fig. 1. Obligatory offers in percent of the schools.

“Gymnasien” and “Hauptschulen” in comparison, split up according to states.

With respect to the single states, a clear descent can be seen from leader Kärnten

with a commendable average of about 71% of the schools with obligatory informatics

0
10
20
30
40
50
60
70
80
90

100

Gymnasien

Hauptschulen

Sek 1

offers in the complete lower secondary down to the bottom of the table marked by

Tirol with about 32% of the schools which offer obligatory informatics classes.

Especially with respect to the “Gymnasien”, Kärnten is in the fore with approx. 87%,

and again Tirol forms the end with only just more than 31%. As for the

“Hauptschulen”, Oberösterreich is in the lead with 68%, while Vorarlberg marks the

end with about 32%.

Also, there is a visible difference between numbers for the “Gymnasien” and the

“Hauptschulen” in most states, with no clear tendency.

4.2 Results for electives

Besides the obligatory offers there is a multitude of informatics electives, which

are not attended by all pupils but rather only chosen by some of them. It is not

obvious from the collected data as to how many pupils opt for the classes. The offer

nevertheless is considerable and indicates that also the pupils show a strong interest in

informatics topics. Fig. 2 depicts the range of electives in a tag cloud: Electives that

are offered more often are represented in larger letters, more rare classes in smaller

letters.

Fig. 2. Tag cloud of electives

Fig.3 depicts the percentage of schools which offer electives in informatics. The

data was split up again into the “Gymnasien” (blue) and the “Hauptschulen” (red).

Both school types put together are indicated in green. It should be noted, that fig. 3

contains no information on the weekly hours of the classes, or on the year(s) in which

the classes are held, or on how many pupils chose those classes.

The overall numbers for the electives (roughly ranging between 35% and 55%) are

slightly lower than those for the obligatory offers (between 32% and 71%).

As compared to the obligatory classes, a slightly different picture for the electives

is revealed: Burgenland seems to prefer electives because it is located at the lead here.

Three of the four leaders from the obligatory offers (Kärnten, Oberösterreich,

Niederösterreich) are found on the front places again, while Tirol makes to the

midfield. The capital Wien ranks at the back for both, the obligatory offers and the

electives.

In some states (Oberösterreich, Vorarlberg) there is a huge difference (over 30%,

over 20%) between the “Gymnasien” with a rather low average and the

“Hauptschulen” with a quite high average, while in other states (Niederösterreich,

Kärnten, Salzburg) numbers are almost equal. Again, no clear tendency can be seen

with respect to school types.

Fig. 3. Offers for "electives" in percent of the schools

4.3 Results for e-Learning

Another interesting aspect is the offer of e-learning, on the one hand to learn about

its spread and gaining acceptance, on the other hand to find out any peculiar

differences.

Fig. 4 depicts the percentage of schools that offer e-learning possibilities. Again,

the data was split up into the “Gymnasien” (blue) and the “Hauptschulen” (red). Both

school types put together are indicated in green.

The results are astonishing mainly by the fact that a serious difference was found

regarding the school type which extends over (almost) all states: e-learning

possibilities in “Gymnasien” can be found in 30% to 70%, while ”Hauptschulen”

offer e-learning in less than 20%. They only sad exception is Wien where the

“Gymnasien” approach the low average of the “Hauptschulen”.

0

10

20

30

40

50

60

70

Gymnasien

Hauptschulen

Sek 1

Fig. 4. Schools with e-learning possibilities (in percent)

A possible explanation for this data situation could be the circumstance that

“Gymnasien” also offer the upper secondary level, while “Hauptschulen” are covering

only the lower secondary level. One could therefore suspect that the effort to provide

e-learning is mostly justified for the upper secondary level. In this respect it should be

noted that the collected data does not indicate whether pupils from the lower

secondary level actually use e-learning.

4.4 Frequent electives

The most frequent electives are in a clear agreement in (almost) all states:

"informatics" (by far the most common elective and therefore basically equal with

data from fig.3), "typewriting" (fig.5), and "word processing" (fig.6).

Fig. 5 depicts the percentage of schools that offer typewriting as an elective. Fig. 6

depicts the percentage of schools that offer word processing as an elective. Again, the

data was split up into the “Gymnasien” (left bar) and the “Hauptschulen” (middle

bar). Both school types put together are indicated by the right bar.

There is a clear trend, supported by all states, that typewriting is offered more often

in the “Hauptschulen” than in the “Gymnasien”, roughly twice as often on the

average.

Word processing seems to show no clear tendency whatsoever, neither with respect

to the school types, nor with respect to the states. Overall numbers are less than half

of those from typewriting.

0

10

20

30

40

50

60

70

80

Gymnasien

Hauptschulen

Sek 1

Fig. 5. Elective “typewriting” in all of Austria (in percent)

Fig. 6. Elective “word processing” in all of Austria (in percent)

0

10

20

30

40

50

60

Gymnasien

Hauptschulen

Sek 1

0

5

10

15

20

Gymnasien

Hauptschulen

Sek 1

Fig. 7. List of most common electives in all of Austria (in order of frequency)

Fig. 7 lists the most common electives with their absolute numbers of occurrence

in all of Austria. As can be seen, many classes are held in only a few schools. Some of

them cover similar topics, some present content that overlaps with other classes.

“Informatik” (informatics) is by far the most common class, but that does not

imply, that the same contents are presented in different schools. Every school is free

to teach whatever they deem suitable. So, “Informatik” might actually cover contents

1 10 100 1000

Informatik
Maschineschreiben

Textverarbeitung
GZ/DG mit PC-Unterstützung

Netzwerktechnik
CISCO

vernetzte Systeme
Lego League

Digitale Fotografie, Videoschnitt
Webdesign

Biologie und Informatik
Musik Elektronik Computer

MentorPlace
Schulnetzwerkbetreuung

eWorking
Grafisches Gestalten

PC kreativ
E-Kommunikation

Einführung in Algorithmen
Steuerungstechnik mit dem PC

Projekt Hardware
Technische Informatik

Medientechnologie
E-Conversation

Neue Medien
Roboterbau- und programmierung

PC-Werkstatt
Computergrafik

Computer + Musik
Deutsch + Computer

EDV-Turor/innen-Ausbildung

of all other electives. This diversity with respect to the topics and contents of electives

might seem like a wide choice, but actually rather reflects the lack of structure in

informatics education.

5 Conclusion

Results show that in fact a large number of schools at the lower secondary level

use their autonomous curriculum design space for informatics classes, be it as

obligatory offers or electives. There were only a few schools which did not offer any

informatics classes at all (8.9% Gymnasien, 25.2% Hauptschulen). Averaging over all

of Austria, obligatory informatics classes can be found at 53.4% of the lower

secondary schools, while informatics electives are offered at 47.3% of them.

These school initiatives are very laudable and welcome as they try to fill the gap

between society’s needs and the ministry’s (non-)regulation. Still, this cannot

guarantee a sound informatics education. On the lower secondary level, rooting of

computer skills in the curriculum is still missing, binding informatics education

standards are lacking. Despite all efforts, the current situation leads to a disastrous

heterogeneity in the pupils’ informatics knowledge at the end of the lower secondary

level, which the upper secondary schools have to fight, inevitably.

References

1. Arbeitsgruppe „Bildungsstandards in Angewandter Informatik“: Angewandte Informatik:

Berufsbildende Höhere Schulen – Das Kompetenzmodell (Version 1.18), 2008.

2. bm:ukk Bildung und Schulen (abgefragt am 21.1.2011)

URL: http://www.bmukk.gv.at/schulen/index.xml

3. CD Austria Sonderheft 5/2005, CDA-Verlag, Linz, 2005.

4. Eder C.: Bildungsstandards in Informatik. Salzburg, 2007.

5. Egger H.: Grundkompetenzen in Informatik an Vorarlberger Gymnasien – IKT-Grund-

kenntnisse auf Schulstufe 6. In MNI-Fonds für Unterrichts- und Schulentwicklung S2

“Grundbildung und Standards”, Frastanz, 2005.

6. bm:ukk Lehrpläne (abgefragt am 21.01.2011)

URL: http://www.bmukk.gv.at/schulen/unterricht/lp/lp_abs.xml

7. Micheuz P.: Some Findings on Informatics Education in Austrian Academic Secondary

Schools. Informatics in Education, 7(2), 221–236. 2008.

8. Micheuz P.: Zahlen, Daten und Fakten zum Informatikunterricht an den Gymnasien

Österreichs, In INFOS 2009, 13. GI-Fachtagung Informatik und Schule 21.-24. September

2009 an der Freien Universität Berlin, S243-254, Klagenfurt, 2009.

9. Gesellschaft für Informatik: Grundsätze und Standards für die Informatik in der Schule.

Beilage zu LOG IN, 28 (150/151), 2008.

10. Rohrer M., Micheuz P.: Evaluation des Informatikunterrichts in den 1./2. Klassen der AHS

in Kärnten. In MNI-Fonds für Unterrichts- und Schulentwicklung S2 „Grundbildung und

Standards“, Villach, 2006.

11. Smejkal P.: Informatik an Österreichs Schulen in der Sekundarstufe I. Diplomarbeit, TU

Wien, 2010.

On Misconceptions and
Implementing ‘A Class Defines a Data Type’

Jan Vahrenhold

Faculty of Computer Science, Technische Universität Dortmund, 44227 Dortmund, Germany*

 In the light of recent research on misconception related to the object-oriented
concepts of ‘object’ and ‘class’, we discuss an approach to implement Hu’s def-
inition “A class defines a data type” and comment on how this approach can
help avoiding the formation of misconceptions. Our approach is based upon
bootstrapping Hu’s definition, and the resulting teaching sequence follows
Bruner’s spiral model by covering entity-relationship models, abstract data
types, and finally objects and classes. Also, the approach ties in with our con-
cept of braided teaching that allows for contextualized teaching of computer
science in (lower) secondary education.

Keywords: Object-orientation, misconceptions, ER-model, abstract data type

1 Introduction

In his keynote address at the 2007 German Conference on Computer Science in
Primary and Secondary Education, Böstler [Böstler 2007] observes the dire state of
first-year programming courses even though students leaving secondary schools tend
to have had a broader exposure to computer science than in previous years. After a
broad survey of methods taken to improve the situation, he concludes by saying “Are
we teaching object-orientation in the wrong way? – Apparently, the answer is ‘yes’,
but we don’t know what we are doing wrong.” [Böstler 2007, p. 9]. Among his obser-
vations is that novice computer science students are prone to misconceptions regard-
ing object-orientation and that despite a surprisingly large body of literature on mis-
conceptions, there are only “isolated are rare efforts” to avoid their formation
[Böstler 2007, p. 18]. As a central challenge for computer science education, he iden-
tifies preparing high-school teachers with respect to teaching object-orientation.

Böstler’s observations are confirmed by a study presented by Kohl and Romeike
[Kohl and Romeike 2006]. The authors surveyed in-service teachers after a training
workshop on object-orientation and report that a surprisingly high percentage of those
willing to participate in the survey were unable to properly define central concepts in
object-orientation (including the concepts of ‘object’ and ‘class’).

A large (if not the overwhelming) part of this can be attributed to the lack of proper
(textbook) material. Hu presents his concern about this in an article aptly named “Just

* This work was supported in part by the Deutsche Telekom Stiftung (project dortMINT).

2 Jan Vahrenhold

Say: ‘A Class Defines A Data Type’” [Hu 2008] where he pointed out “A class (as in
an object-oriented programming language like Java) defines a data type. Yet this fact
is typically not mentioned in CS1 textbooks.“ [Hu 2008, p. 19] A survey of high
school textbooks (none listed in the references) similarly shows that the concepts of
“object” and “class” are often defined only informally, in a circular way, or not at all.

The purpose of this article is to outline a (sequence within a) curriculum for sec-
ondary education targeted toward gradually introducing the concepts of ‘object’ and
‘class’. This sequence is designed to incorporate research on misconceptions and can
serve as a strand in a braided teaching curriculum [Pasternak and Vahrenhold 2010].

1.1 Teaching Object-Orientation

The ever-ongoing debate of (whether and) when to teach object-orientation in in-
troductory computer science courses (see, e.g., the SIGCSE 2005 special session
“Resolved: Objects Early Has Failed” [Astrachan et al. 2005] for the case of introduc-
tory courses on college level) has led to a number of research findings and experience
reports that is too large to be summarized in an appropriate manner. What is noticea-
ble, however, is the fact that, to the best of the author’s knowledge, all courses con-
sidered on college level are oriented towards teaching object-oriented programming
in the context of a traditional introductory computer science course sequence. As one
consequence, the existing literature on how to introduce object-orientation and on
how to avoid misconceptions is limited to possibly restructuring and rearranging the
order in which the canonical subject matters are treated – see, e.g., [Adams 1996,
Alphonce and Ventura 2002, Buck and Stucki 2000] – or to using tailored program-
ming environments (e.g., [Dann et al. 2009, Kölling 2008], to name two prominent
examples) or contexts [Forte and Guzdial 2005] to achieve the goals.

 For the case of introductory courses in secondary education, there is a broad litera-
ture on (whether and) how to teach object-orientation (the reader is referred to the
theses of Brinda [Brinda 2003] and Diethelm [Diethelm 2007] and the references
therein), but there is no study on misconceptions or on how to address them.

A recent paper by Pedroni and Meyer [Pedroni and Meyer 2010] investigates the
“high interrelatedness of concepts” in object-orientation and determines a “core
group” of concepts starting from which object-oriented programming can be taught.
This core group contains (among seven other concepts) the concepts of ‘object’ and
‘class’, so the understanding of (the difference) of these concepts is of utmost im-
portance for any course teaching object-orientation.

1.2 Concepts and Misconceptions

Despite the above-mentioned debate of “Objects Early” versus “Objects Late”
there seems to be a broad consensus about what constitutes the central concepts in
introductory-level object-orientation – regardless on whether it is taught in secondary
or tertiary education. Ragonis and Ben-Ari [Ragonis and Ben-Ari 2005] propose as
the three “central meta-objectives” of teaching object-oriented programming that
students should come to understand modularity, encapsulation, and information hid-

On Misconceptions and Implementing ‘A Class Defines a Data Type’ 3

ing. Referring to Stroustrup’s classification of approaches to software design, Adams
names “classes” and “inheritance” as the “defining characteristics of object-oriented
design” [Adams 1996]. Since Eckerdal and Thuné observe a variety of misconcep-
tions even for the fundamental concepts of ‘class’ and ‘object’ [Eckerdal 2006, Eck-
erdal and Thuné 2005] and since these concepts have been identified to be a crucial
starting point for any course teaching object-orientation [Pedroni and Meyer 2010],
we restrict the following discussion to these concepts.

Several findings about misconceptions related to object-orientation and to the con-
cepts of ‘class’ and ‘object’ have been reported [Culwin 1999, Eckerdal 2006, Eck-
erdal and Thuné 2005, Holland et al. 1997, Ragonis and Ben-Ari 2005, Sanders et al.
2008, Thuné and Eckerdal 2009].1 Among the misconceptions encountered in early
stages of the introduction to object-oriented design, the following three misconcep-
tions are of particular importance (see, e.g., Culwin [Culwin 1999], Holland et al.
[Holland et al. 1997], and Ragonis and Ben-Ari [Ragonis and Ben-Ari 2005]):

• Misconception A: Students may conflate ‘object’ and ‘class’ if only a single in-
stance of a class is used.

• Misconception B: Students may confuse the identity with the value of a “name”
instance attribute.

• Misconception C: Students may consider two objects to be identical if the values of
each of their instance attributes are equal (or, vice versa, two objects of the same
class are not allowed to have equal values for their instance attributes).

The importance of focusing on object-oriented concepts instead of the syntax of a
particular programming language has been stressed by Alphonce and Ventura [Al-
phonce and Ventura 2002], and Bennedsen and Casparsen [Bennedsen and Cas-
parsen 2004] follow up on this observation and suggest interlacing (UML-based)
modeling and implementation in a spiral fashion.

Kölling and Rosenberg [Kölling and Rosenberg 2001] list the following set of
“very important concepts” in object-orientation (labels added by the author):

• Concept A: “Objects are created from classes.”
• Concept B: “All objects of the same class have the same structures; objects of other

classes have different structure.”
• Concept C: “Many objects can be created from a single class.”
• Concept D: “The state (variable values) of each object is different.”
• Concept E: “Objects have operations (methods) which can be invoked.”
• Concept F: “Methods may have parameters and results.”

Concepts A, B, and C are only suited to address Misconception A if there is a
properly defined class, and this in turn requires the teacher to present the students
with such a class. Unfortunately – as noted by Hu [Hu 2008] – many textbooks lack a
proper definition of ‘class’ and this in turn can lead to the conflation of ‘object’ and

1 As mentioned, research on misconceptions has been restricted to college-level courses so far.

Thus, no results related to secondary education can be built upon, but it seems safe to as-
sume that similar misconceptions may be encountered at least in upper secondary education.

4 Jan Vahrenhold

‘class’ as observed by Kohl and Romeike [Kohl and Romeike 2006] even on teacher
training level. Thus, we propose a course sequence that implements Hu’s definition:

Definition 1 [Hu 2008] A class defines a data type.

2 Bootstrapping the Definition

In this section, we bootstrap Hu’s definition (Definition 1) and show how the result-
ing sequence of concepts can be implemented in secondary computer science educa-
tion. Hu’s concise, yet appealing definition recurs to the concept of a data type:

Definition 2 [Chang et al. 2001, p. 116] A data type [is a] […] set of values with [a]
set of operations.

In the light of the concerns raised by Buck and Stucki [Buck and Stucki 2000] re-
garding the students’ exposure to complexity and structure, we bootstrap this defini-
tion in a two-fold way by separately considering “values” and “operations”. For the
first part, we resort to entity-relationship diagrams and the relational data model in
databases, and for the second part we consider the specification of abstract data types.

As a guideline for the bootstrapping process, we aim at obtaining an understanding
of the following definition:

Definition 3 An (correctly modeled) object models an intellectually delimited entity
with a state and (possibly state-dependent) behavior.2

The concept of an ‘entity’ has been defined by Chen in the context of the entity-
relationship model:

Definition 4 [Chen 1976, p. 10f.] An entity is a “thing” which can be distinctly identi-
fied. […] Entities are classified into different entity sets. […] If we know that an enti-
ty is in [some particular] entity set […], then we know that it has the properties com-
mon to the other entities in [this] entity set.

As we will outline in Section 3.2, we can lay the groundwork for addressing Mis-
conceptions B and C (identity versus state) using a straightforward sequence of dis-
cussing entity-relationship diagrams and the relational model. To complete the prepa-
rations for Hu’s definition, the sequence then covers abstract data types:

Definition 5 An abstract data type is a data type for which neither the representation
of the values nor the implementation of the operations is prescribed.

We note in passing that a recent paper by Ragonis [Ragonis 2010] also connects
abstract data types with object-orientation. Whereas we discuss abstract data types as
preparation for introducing object-orientation, Ragonis’ approach is to use the design
and implementation of the abstract data type SET as an example and exercise for
summarizing object-oriented principles taught before.

2 This definition builds upon Echtle and Goedicke’s definition “An (correctly modeled) object

models an intellectually delimited entity with all its properties.” [Echtle and Goedicke, p. 84]

On Misconceptions and Implementing ‘A Class Defines a Data Type’ 5

To summarize, we propose to first teach entities that have a state but no state-
dependent behavior, then to teach abstract data types that describe behavior but do
not have an explicit representation of the state, and finally to converge on objects that
have both a state and a (possibly state-dependent) behavior. Each of these topics is
sufficiently unique such that the sequence can be taught in three separate steps (possi-
bly interleaved by other topics), and this allows an embedding into a spiral curricu-
lum [Bruner 1960] or a curriculum based upon braided teaching (see Section 3.1).

3 Design of the Sequence of Subjects Taught

The bootstrapping of Hu’s definition (see Section 2) resulted in three major topics,
namely “Entity-relationship diagrams”, “Abstract data types”, and “Objects and clas-
ses”. These topics are discussed in the Section 3.2 with a focus on the preparation of
the concepts of ‘class’ and ‘object’ and on how to avoid misconceptions.

3.1 Proof of Feasibility: Integration into the Curriculum

As an important prerequisite, we have to argue that it is indeed possible, i.e., al-
lowed for by curricular restrictions, to teach the above subjects in secondary educa-
tion. Since a recent report [Ericson et al. 2008] shows the diversity (in terms of both
breadth and depth) of (curricula and thus) teacher certification across the world, we
restrict ourselves to three examples. In the author’s country of residence (Germany),
the curricula for upper secondary education in most federal states allow for covering
all three topics. In the case of lower secondary education in Germany, both infor-
mation systems and object-orientation are explicitly mentioned in the “Educational
Standards for Computer Science in Lower Secondary Education“ [Brinda et al. 2009].
Unfortunately, computer science is actually taught with full credit in only a few fed-
eral states, but the approved textbooks for these states contain material for teaching
both information systems and object-orientation. Admittedly, the topic of abstract
data types (when taught in breadth and depth) is too demanding for lower secondary
education, but – as outlined in the following – the sequence does not rely on a (mini-
mal) set of equations describing the semantics. The only characteristics required are
the interface defined and the absence of a concrete representation of the state.

It is worthwhile noting that all curricula (and the corresponding textbooks) follow
an “Object-Orientation First” or “Programming First” approach and thus cover object-
orientation prior to modeling in a database context. Ironically, one textbook links
these two subjects by stating that database systems can used to model relationships
between objects (and not: entities); this textbook, however, starts out presenting ob-
jects that are simply containers for attributes and do not have any behavior other than
accessing these attributes. In this case, students can fall for yet another misconception
“if the data aspect of objects is overemphasized at the expense of the behavioral as-
pect“ [Eckerdal and Thuné 2005, p. 92] – see also Concepts E and F (Section 1.2).

Secondly, ACM’s K-12 curriculum for computer science [Tucker et al. 2004] has a
very strong focus on algorithmics and computational thinking and, conversely, a rela-

6 Jan Vahrenhold

tively minor component dedicated to object-oriented modeling and programming.
Nonetheless, Level I covers (using) databases, Level II includes “data types” and
“tools for expressing design”, and Level III includes “objects and classes”.

Finally, the Israeli curriculum for secondary education computer science is very
much oriented towards algorithmics as well and follows an “Objects Second” ap-
proach – see, e.g., [Hazzan et al. 2008]. This curriculum explicitly mentions abstract
data types as a mandatory component and offers an elective component that can be
used to cover (management) information systems “both in theory and practice”.

We conclude with a more general didactic comment: In a previous paper, we de-
veloped the braided teaching approach to organizing items to be taught in secondary
education computer science. This approach simultaneously allows for following a
spiral curriculum and for teaching contextualized computer science by working along
what we call strands. Our proposed sequence satisfies the criteria for being a strand:

Definition 6 [Pasternak and Vahrenhold 2010] A strand is a sequence of items ad-
dressed in class that satisfies the following criteria:
a) The items can be assigned to a well-defined subject matter (by their structure or

their content).
b) The subject matter is identifiable and recognizable to the students throughout the

sequence.
c) The subject matter is being presented from more than one point of view or em-

bedded in more than one context.
d) The sequence of items is addressed in more than one teaching unit.

3.2 Proof of Concept: A Course for Non-Majors

In this section, we detail the teaching units to be taught in our proposed sequence.
As a proof of concept, we do so in terms of (part of) an introductory computer science
course for college students majoring in humanities and social sciences; this course has
been taught by the author over the past three years. On one hand, the student popula-
tion can be seen as not too different (in terms of interest, previous knowledge, and
possibly also aptitude) from upper-level high-school students (assuming that comput-
er science is taught as part of general education and not in a special-focus course), on
the other hand, the classroom setting in high school and college is rather different.
This, and the fact that the courses taught had an audience of approximately ten stu-
dents each, precludes a quantitative analysis and any attempt to transfer the results.
What can be done, though, is to outline the teaching units and their relative lengths.

3.2.1 Information Systems (7 double sessions)

Information systems are so ubiquitous in students’ everyday lives that they serve as
a well-motivated starting point for the teaching sequence.3 After a brief introduction

3 Due to this didactic aspect and the fact that teaching information systems in secondary educa-

tion computer science additionally helps avoiding the misconception that information sys-

On Misconceptions and Implementing ‘A Class Defines a Data Type’ 7

of databases versus file-based data organization and the layered architecture, the enti-
ty-relationship (ER) model is introduced with a strong focus on precise terminology
on diagram level (i.e. “a member of the entity set X can be in a Y-relation with a
member of the entity set Z” instead of “an X is in a Y-relation with a Z”). This moti-
vates the introduction of cardinalities using both Chen's notation and the (min,max)-
notation. Only then, role names and (key) attributes are added to the diagram. At this
point, we mention that there may be different entity-relationship models, e.g. using
attributes instead of relations, seemingly representing one and the same real-world
situation and thus addressing analysis, discussion, and interpretation competencies.

In the second unit of the information systems part of the sequence, we discuss the
relational model. This unit introduces a concrete representation of the entities mod-
eled; furthermore, the relational algebra serves as a starting point for designing algo-
rithms that use the state of an object for making decisions and for revisiting the Bool-
ean logic. The third unit of the information systems part of the sequence deals with
SQL and includes hands-on lab sessions. While the transition from the relational
algebra to SQL is straightforward, it still raises two issues crucial for introducing
objects and classes: object identity (in contrast to the relational algebra, a SQL ex-
pression does not result in the removal of tuples with identical attributes unless ex-
plicitly stated otherwise) and the need for defining and using (elementary) data types.

Table 1 summarizes how concepts in object orientation are prepared for by intro-
ducing concept from entity-relationship diagrams. The table can be extended in an
obvious way by adding multivalued attributes or is-a relations, but we propose to
defer these topics until objects and classes have been introduced and implemented.
This not only facilitates the introduction of (simple) objects but also allows for revisit-
ing entity-relationship diagrams in a spiral manner after concepts from object-
orientation have been introduced.

ER Concept OO Concept

Entity set Class
Entity Object
Key attribute(s) Object identity
An entity is defined by the values of its
attributes.

The state of an object is defined by the
values of its attributes.

Relations (with cardinalities) Associations (with cardinalities)
Relation versus attribute Association versus composition

Table 1. Preparing OO concepts by ER concepts (note that these concepts are not identical).

Addressing Misconceptions

The most important ingredient for avoiding misconceptions is to use precise terminol-
ogy. For example, conflating entities and entity sets, e.g. by saying “an X” instead of
“a member of entity set X”, needs to be avoided at all costs. By introducing multi-

tems are “some part of ICT” and that it is sufficient to have learned to use some spreadsheet
software, Rohland [Rohland 2009] proposes to intensify teacher training in this area.

8 Jan Vahrenhold

attribute keys such as (name, given_name) we imply that a “name” attribute usually is
not sufficient to identify an object. One of the common misconceptions noted by
Holland et al. [Holland et al. 1997] is the object/variable conflation that occurs if a
class has either exactly one instance variable or only instance variables of exactly one
type. This misconception is avoided from scratch since the real-world examples
commonly used for entity-relationship diagrams (e.g. student—teacher—class / cus-
tomer—company—product) feature a variety of attributes of different types. Finally,
we lay the groundwork for (compiler-given) artificial keys by pointing out that the
social security number is unique (thus a key) by design but has nothing to do with
almost any aspect (“real-world attribute”) of the particular person being modeled.

3.2.2 Abstract Data Types (3 double session)

A rather short section of the sequence is devoted to introducing the concept of ab-
stract data types. This section is motivated by the observation that entity-relationship
diagrams are suited to model attributes and relations but lack the power to describe
behavior. The syllabus covers the canonical abstract data types PAIR, LIST, STACK,
QUEUE, DICTIONARY and PRIORITY_QUEUE but in order to not to overload this sec-
tion, a formal specification of the semantics is given for the first four abstract data
types only. The main focus of this section is on the functional description of the sig-
nature that lays the groundwork for the message-passing paradigm of communication
between objects. Also, the concept of a constructor (reported to be the source of sev-
eral types of misconceptions [Ragonis and Ben-Ari 2005]) can be prepared for.

Addressing Misconceptions

In the light of Misconception B (identity versus “name” attribute), a special em-
phasis is put on the fact that the name of an abstract data type operation is completely
unrelated to the semantics of that operation. At this point, it is instructive to ask an
international student to translate, say, the name of the enqueue operation provided by
the abstract data type QUEUE into a random term from his or her native language and
to consistently use this term throughout the remainder of this class session.

3.2.3 Objects and Classes (6 double sessions)

We start by summarizing what the course has introduced so far: the description of
an entity by its attributes and the description of behavior in the form of abstract data
types. After revisiting Definition 3 (“An (correctly modeled) object models a intellec-
tually delimited entity with a state and (possibly state-dependent) behavior.”) the
YACHT class is used to introduce state and state-dependent behavior.

Excursion: The YACHT Class

During the “Nifty Objects for CS0 and CS1” special session of SIGCSE
2008 [Hummel et al. 2008], Hummel proposed to use the YACHT class as an introduc-
tory example. Since the author has been unable to find a published description of this

On Misconceptions and Implementing ‘A Class Defines a Data Type’ 9

example, the class is described for the readers’ convenience: A (sailing) yacht is a
watercraft that, in a simplified form, can be modeled by its name, the number of cab-
ins, the number of crewmembers, and its waterline length. An additional beauty of
this example lies in the fact that different types of yachts are referred to as “classes”.4

Since all yachts in the same class have the same waterline length, this attribute –
even if introduced as an instance attribute – can be explained easily as a class attrib-
ute. The number of crewmembers and the number of cabins are related and upper- and
lower-bounded in an obvious way, and this relation leads to the introduction of state-
dependent behavior, e.g. for a “boarding” method. Finally, the waterline length is an
attribute that is – at least for the owner – of little interest per se but serves as the basis
for computing the maximum hull speed, i.e., a derived attribute.

Object-Oriented Concepts

After the initial discussion of the YACHT class, the course covers message passing
(building upon the concepts from abstract data type) and puts emphasis on the concept
of encapsulation and information hiding. This motivates the distinction between pub-
lic and private visibility for methods and attributes and leads to the introduction of
UML class and object diagrams. Only at this point, the first contact with an object-
oriented programming language is made. We found that – for the reasons given by
Kölling and Rosenberg [Kölling and Rosenberg 2001] – the BlueJ environment is
well suited for this task. Topics covered in the programming-related part of this sec-
tion are expressions, variables, control structures, simple data types, functions, meth-
ods, and loops (which may or may not have been taught before). At the end of the
course, abstract classes and inheritance (realizing the is-a concept) are introduced.

Addressing Misconceptions

Students – assuming that they have ever been to a lake or a port – are so familiar
with seeing more than one yacht that it is virtually impossible to fall for Misconcep-
tion A (conflating ‘object’ and ‘class’). To address Misconception C, it is sufficient to
consider the following tiny example: Assume there are two yachts (see Table 2), one
of which sails in the Baltic Sea and one of which sails in the Adriatic Sea. Since both
yachts belong to different owners, none of the owners know about the other yacht.
What happens if the owner of the ‘Flavia’ decides to re-christen her ‘Octavia’?

Name Cabins Crewmembers Waterline length
Flavia 4 4 8

Octavia 4 4 8

Table 2. Yachts represented by their attributes.

According to the relational model (note that the resemblance of the display of the
attributes to a relation is by design) multiple tuples with identical attribute values are

4 Unfortunately, the beauty also lies in the eye of the beholder who is required to have at least a

vague understanding of sailing boats to fully appreciate the example.

10 Jan Vahrenhold

not allowed. Nobody, however, expects one of the yachts to vanish (or both yachts to
merge into one) in the very moment a new name is painted on the hull. The only way
out as to understand that even though the yachts now have the same state (as induced
by their attribute values) yet still different identities.

We note that the YACHT class can be augmented to also illustrate more advanced
concepts in object-orientation, such as inheritance (generalizing to watercraft, special-
izing to different classes of keelboats), aggregation (changing the overall sail area by
setting different types of sails), interfaces/multiple inheritance (adding an inboard
motor), the decorator design pattern (adding a outboard motor), and so on.

4 Conclusions

In this paper, we have proposed on a sequence of subject matters in secondary
computer science education with a focus on conceptual modeling. Our approach is in
line with a “Modeling before Programming”-like approach advocated by, e.g., Diet-
helm [Diethelm 2007], but differs significantly from previous approaches by a delib-
erately slow progression towards concepts in object-orientation and a strong focus on
avoiding the formation of misconceptions. The defining characteristic of this se-
quence is to use concepts from (relational) databases and abstract data types to facili-
tate the introduction of the object-oriented concepts of ‘class’ and ‘object’. The sepa-
ration of these steps allows for integration into a spiral curriculum resp. a curriculum
based on braided teaching. It remains an open research question to investigate the
long-term effects using qualitative or mixed methods and to investigate which impact
(if any) such a course design might have on the students’ programming proficiency.

5 References

[Adams 1996] J. C. Adams. Object-centered design: A five-phase introduction to object-
oriented programming in CS1-2. In J. Impagliazzo, E. S. Adams, and K. J. Klee, eds., Proc.
27th SIGCSE Techn. Symp. on Computer Science Education, pp. 78–82, 1996.

[Alphonce and Ventura 2002] C. Alphonce and P. Ventura. Object orientation in CS1-CS2 by
design. In M. E. Caspersen, D. Joyce, D. Goelman, and I. Utting, eds., Proc. 7th SIGCSE
Conf. on Innovation and Technology in Computer Science Education, pp. 70–74, 2002.

 [Astrachan et al. 2005] O. Astrachan, K. Bruce, E. Koffman, M. Kölling, and S. Reges.
Resolved: Objects Early has failed. In W. Dann, T. Naps, P. Tymann, D. Baldwin, and J. D.
Dougherty, eds., Proc. 36th SIGCSE Techn. Symp. on Computer Science Education, pp.
451–452, 2005.

[Bennedsen and Caspersen 2004] J. Bennedsen and M. E. Caspersen. Programming in context –
a model-first approach to CS1. In D. Joyce, D. Knox, W. Dann, and T. L. Naps, eds., Proc.
35th SIGCSE Techn. Symp. on Computer Science Education, pp. 477–481, 2004.

[Bennedsen et al. 2008] J. Bennedsen, M. E. Caspersen, and M. Kölling, eds.. Reflections of the
Teaching of Programming, LNCS 4821, Springer, Berlin, 2008.

[Böstler 2007] J. Böstler. Objektorientiertes Programmieren – Machen wir irgendwas falsch?
(Object-Oriented Programming – Are we doing anything the wrong way?). In: S. Schubert,

On Misconceptions and Implementing ‘A Class Defines a Data Type’ 11

ed., Didaktik der Informatik in Theorie und Praxis (INFOS 2007), pp. 9–20, Gesellschaft für
Informatik, Bonn, 2007. In German.

[Brinda 2003] T. Brinda. Didaktisches System für objektorientiertes Modellieren im Informa-
tikunterricht in der Sekundarstufe II (A didactic system for object-oriented modeling in
upper secondary computer science education), PhD Thesis, Department of Electrical
Engineering and Computer Science, University of Siegen, Germany, 2003. In German.

[Brinda et al. 2009] T. Brinda, H. Puhlmann, and C. Schulte. Bridging ICT and CS:
Educational standards for computer science in lower secondary education. In: Proc.14th
SIGCSE Conf. on Innovation and Technology in Computer Science Education, pp. 288–292,
2009.

[Bruner 1960] J. S. Bruner. The Process of Education, Cambridge, MA, 1960.
[Buck and Stucki 2000] D. Buck and D. J. Stucki. Design early considered harmful: Graduated

exposure to complexity and structure based on levels of cognitive development. In L. B.
Cassel, N. B. Dale, H. M. Walker, and S. M. Haller, eds., Proc.31st SIGCSE Techn. Symp.
on Computer Science Education, pp. 75–79, 2000.

[Chang et al. 2001] C. Chang, P. J. Denning, J. J. Cross II, G. Engel, R. Sloan, D. Carver, R.
Eckhouse, W. King, F. Lau, S. Mengel, P. Srimani, E. Roberts, R. Shackelford, R. Austing,
C. F. Cover, G. Davies, A. McGettrick, G. M. Schneider, and U. Wolz. Computing
Curricula 2001: Computer Science. IEEE Computer Society/Association for Computing
Machinery, 2001. Online: http://www.computer.org/portal/cms_docs_ieeecs/
ieeecs/education/cc2001/cc2001.pdf [Accessed: 2007-11-09].

[Chen 1976] P. P. Chen. The entity-relationship-model—toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, Mar. 1976.

 [Culwin 1999] F. Culwin. Object imperatives! In J. Prey and R. E. Noonan, eds., Proc.30th
SIGCSE Techn. Symp. on Computer Science Education, pp. 31–36, 1999.

[Dann et al. 2009] W. P. Dann, S. Cooper, and R. Pausch. Learning to Program with Alice.
Pearson Education, London, UK, second edition, 2009.

[Diethelm 2007] I. Diethelm. “Strictly models and objects first“ – Unterrichtskonzept und -me-
thodik für objektorientierte Modellierung im Informatikunterricht (“Strictly models and
objects first“ – Design and methodology for teaching object-oriented modeling in secondary
computer science education), PhD Thesis, Department of Electrical Engineering and
Computer Science, University of Kassel, Germany, 2007. In German.

[Echtle and Goedicke 2000] K. Echtle and M. Goedicke. Lehrbuch der Programmierung mit
Java (Teaching Programming in Java), dpunkt.verlag, 2000. In German.

[Eckerdal 2006] A. Eckerdal. Novice Programming Students’ Learning of Concepts and
Practise. PhD thesis, Faculty of Science and Technology, University of Uppsala, 2006.

[Eckerdal and Thuné 2005] A. Eckerdal and M. Thuné. Novice java programmers’ conceptions
of “object” and “class”, and variation theory. In J. Cunha, W. Fleischman, V. K. Proulx, and
J. Lourenco, eds., Proc. 10th SIGCSE Conf. on Innovation and Technology in Computer
Science Education, pp. 89–93, 2005.

[Ericson et al. 2008] B. Ericson, M. Arnomi, J. Gal-Ezer, D. Seehorn, C. Stephenson, and F.
Trees. Ensuring exemplary teaching in an essential discipline: Addressing the crisis in
computer science teacher certification. Final report of the CSTA teacher certification task
force, Computer Science Teachers Association, New York, 2008.

[Forte and Guzdial 2005] A. Forte and M. Guzdial. Motivation and nonmajors in computer
science: Identifying discrete audiences for introductory courses. IEEE Transactions on
Education, 48(2):248–253, May 2005.

 [Hazzan et al. 2008] O. Hazzan, J. Gal-Ezer, and L. Blum. A model for high school computer
science education: The four key elements that make it! In J. D. Dougherty, S. H. Rodger, S.

12 Jan Vahrenhold

Fitzgerald, and M. Guzdial, eds., Proc. 39th SIGCSE Techn. Symp. on Computer Science
Education, pp. 281–285, 2008.

[Holland et al. 1997] S. Holland, R. Griffiths, and M. Woodmann. Avoiding object
misconceptions. In C. M. White, C. Erickson, B. J. Klein, and J. E. Miller, eds., Proc.28th
SIGCSE Techn. Symp. on Computer Science Education, pp. 131–134, 1997.

[Hu 2008] C. Hu. Just say ‘A class defines a data type’. Communications of the ACM,
51(3):19–21, Mar. 2008.

[Hummel et al. 2008] J. Hummel, C. Alphonce, J. Bergin, M. E. Caspersen, S. Hansen, J. E.
Heliotis, and M. Kölling. Nifty objects for CS0 and CS1. In J. D. Dougherty, S. H. Rodger,
S. Fitzgerald, and M. Guzdial, eds., Proc. 39th SIGCSE Techn. Symp. on Computer Science
Education, pp. 437–438, 2008.

[Kohl and Romeike 2006] L. Kohl and R. Romeike. Aktueller Stand der Objektorientierung bei
Informatiklehrerinnen und -lehrern (State of object-orientation today for Computer Science
high school teachers). In: P. Forbrig, G. Siegel, and M. Schneider, eds.: HDI 2006:
Hochschuldidaktik der Informatik, pp. 63–75, Gesellschaft für Informatik, Bonn, 2006. In
German.

[Kölling 2008] M. Kölling. Using BlueJ to introduce programming. In [Bennedsen et al. 2008],
pp. 98–115.

[Kölling and Rosenberg 2001] M. Kölling and J. Rosenberg. Guidelines for teaching object
orientation. In S. Fincher, B. Klein, F. Culwin, and M. McCracken, eds., Proc.6th SIGCSE
Conf. on Innovation and Technology in Computer Science Education, pp. 33–36, 2001.

 [Pasternak and Vahrenhold 2010] A. Pasternak and J. Vahrenhold. Braided teaching in
secondary CS education: Contexts, continuity, and the role of programming. In: T. Cortina
and E. Walker, eds.: Proc. 41st SIGCSE Techn. Symp. on Computer Science Education, pp.
204–208, 2010.

[Pedroni and Meyer 2010] M. Pedroni and B. Meyer. Object-oriented modeling of object-
oriented concepts. In: J. Hromkovič, R. Královič, and J. Vahrenhold, eds.: Proc. 4th
International Conference on Informatics in Secondary Schools – Evolution and Perspective
(ISSEP 2010), LNCS 5941, pp. 155–169, Springer, Berlin, 2010.

[Ragonis 2010] N. Ragonis. A pedagogical approach to discussing fundamental object-oriented
programming principles using the ADT SET. ACM Inroads, 1(2):42–52, June 2010.

[Ragonis and Ben-Ari 2005] N. Ragonis and M. Ben-Ari. A long-term investigation of the
comprehension of OOP concepts by novices. Computer Science Education, 15(3):203–221,
Sept. 2005.

[Rohland 2009] H. Rohland. Von der ersten Entitätsklasse zum Webshop – Datenbanken in
allgemein bildenden Schulen (From the first entity class [sic!] to a web-based shop –
databases in seondary education). In: B. Koerber, ed., Zukunft braucht Herkunft, 25 Jahre
»INFOS – Informatik und Schule« (INFOS 2007), pp. 9–20, Gesellschaft für Informatik,
Bonn, 2007. In German.

[Sanders et al. 2008] K. Sanders, J. Boustedt, A. Eckerdal, R. McCartney, J. E. Moström, L.
Thomas, and C. Zander. Student understanding of object-oriented programming as
expressed in concept maps. In J. D. Dougherty, S. H. Rodger, S. Fitzgerald, and M. Guzdial,
eds., Proc. 39th SIGCSE Techn. Symp. on Computer Science Education, pp. 332–336, 2008.

[Thuné and Eckerdal 2009] M. Thuné and A. Eckerdal. Variation theory applied to students’
conceptions of computer programming. European Journal of Engineering Education,
34(4):339–347, Sept. 2009.

[Tucker et al. 2004] A. Tucker, F. Deek, J. Jones, D. McCowan, C. Stephenson, and A. Verno.
A model curriculum for K-12 computer science: Final report of the ACM K-12 task force
curriculum committee, Compter Science Teachers Association, New York, 2004.

The formation of ICT-competence in primary school in
the new Federal State standard of primary education

Valery Vardanyan, Tatiana Rudchenko

Dorodnicyn Computing Centre of Russian Academy of Sciences, 40 Vavilova, Moscow,
Russia

rudchenko1@yandex.ru , vardanyan47@yandex.ru

Abstract. The article focuses on the ways of forming ICT-competence in
primary school as part of the “Program of the Universal Educational Activities
Formation” in accordance with the new Federal State standard of primary
education. The authors discuss in detail the elements of ICT-competence which
should preferably be developed in each subject sphere of the curricculum. Of
the four main forms of students’ work with ICT means application the authors
emphasise project activities and give some examples of how this form can be
applied in various subject spheres.

Key words: ICT-competence formation, computer literacy, ICT means
application, project activities, Federal State standard of primary education.

In accordance with a new Federal State Education Standard (FSES) in the sphere
of primary schooling the main emphasis is laid upon metasubject educational results.
The formation of the universal educational activities is the main result of the Standard
realization. ICT-competence basics (not only basic skills of using a wide spectrum of
information and communication technologies (ICT), but formation of a conscientious
and competent approach to the choice and implementation of ICT means) are part of
these metasubject results in mastering the program of primary education and an
obligatory component of the program aimed at formation of the universal educational
activities. The FSES “Program of the Universal Educational Activities Formation”
contains the “Subprogram of ICT-competence Formation”. This subprogram
describes ICT-competence elements that are a part of any universal educational
activities and of the corresponding technological skills, which are being shaped in the
course of different subjects’ acquisition. Therefore, the students’ ICT-competence
formation must penetrate al subject spheres in a primary schooling period.

Thus in the subject sphere “Philology” it’s preferable to form elements of ICT-
competence concerning lingual, reading and speechmaking competence. In the sphere
of “Mathematics and Informatics” it’s preferable to form ICT-elements concerning
logical, iconic and symbolic competences, and, also, to learn to master
interdisciplinary informational concepts. In the subject sphere “Environment” it’s
preferable to form ICT-competences concerning different methods of natural and
social studies (in particular, obtaining, recording, presenting, and generalization of
data). In the spheres “Art” and “Music” – ICT-competence elements concerning
creation and transformation of sound and graphic objects, and in “Technology” –

making and use of information milieu for practical, creative and instructional task
solution.

The new FSES ascribes the acquisition of a primary idea of computer literacy to
the subject sphere “Mathematics and Informatics”, but initial skills of the ICT means
usage belong to the sphere “Technology” for they are classified as intellectual work
technologies. The acquired skills training must go on in all subject spheres while the
leading integrative role is to be played by “Mathematics an Informatics” one.

Today, there exist four main forms of students’ work with ICT means application:
working in adapted learning program media, project activities, working with object
simulators, learner’s site communication.

Project making involves kids in solving practical, interesting and meaningful tasks
using information and communication technologies including ICT means. Very often,
projects look like integral activity, encompassing several subject spheres. In the first
form, the projects made with ICT means use mainly special educational environments
and adapted software, but, little by little, in the following forms kids start using non-
adapted, universal programs.

Within the framework of subject sphere “Mathematics and Informatics” it seems
convenient to work with program environment that includes subject (mathematic and
informatics) task complexes, solving of which promotes subject matter mastering and
main computer literacy skills formation. Mathematic simulators help kids secure the
necessary skills (computational, for instance) within a rather modest class time span.
Projects at Mathematics and Informatics lessons allow to be distracted from purely
mathematic tasks to see, how obtained knowledge may be implemented in solving
practical tasks in other spheres. While tackling such a project students learn to work
in a group, distribute responsibilities in solving the task (thus, the communicative
elements of ICT-competence are formed).

Touch-typing skill formation is going on mainly in subject sphere of Philology.
The simulators of the ten finger method of text input must be used already in the 1st

form; it’s good to learn handwriting and keyboard writing at the same time. Keyboard
writing skills give child an unprecedented freedom to formulate thoughts that is much
less while handwriting. Solving subject problems, students gradually get used to
apply text editing programs (first, adapted and, thereupon, universal ones), and by the
time of secondary schooling they become confident users. Project activity in the
sphere “Philology” must also include communicative tasks (correspondence with
peers in Russian and in foreign languages, for instance), which help kids learn to use
different communication media (e-mail, chat rooms, IP-phone etc.). Each project
solves subject tasks (writing a letter properly, for instance) and forms necessary
elements of ICT-competence (using of appropriate environments and equipment, and
also mastering rules of written and oral communication). For the sake of such work
organization it’s necessary to create school and subject sites where pupils can
communicate with each other and the teacher in different forms. Besides improving
computer literacy such activity leads to a higher informational and communication
culture level, which, in its turn, constitutes a part of general educational culture.

At “Environment” lessons ICT-competence most naturally forms within the
framework of the project making activity. In the course of project making the use of
ICT means (digital microscope, for instance) will enable kids to do independent
research. As an important part of a project the research or experiment report writing

and design (tests, graphs, snapshots, presentations) become a great opportunity for a
kid to share personal discoveries and observations with others.

At “Music” and “Art” lessons ICT means can be used in projects and in solving
class tasks for activity results recording. For instance, kids can record a performance
fragment and save it in the form of audio or video file. While making projects
including picture creation students may use computer graphics and appliqué. So, kids
may design and make beautiful post cards including those with music and animation.

ICT-competence formation mustn’t confine itself to work with ICT means.
Information and communication technologies are not mandatorily bound to any ICT
means. In particular, students must get to know different communication and
information activity technologies, which are not directly connected with technical
means: intellectual, objective, symbolic etc. Therefore, the ICT-competence
improvement must constantly take place, when kids work with data or when they
communicate, i.e. both at the lesson and in extramural activities.

References

1. Bulin-Sokolova E.I., Rudchenko T.A., Semenov A.L., Khokhlova E.N.: The Formation of
Primary School Students’ ICT-competence. Manual for Teachers of General Educational
Institutions (Формирование ИКТ-компетентности младших школьников. Пособие для
учителей общеобразоват. учреждений). Prosveshcheniye publishers, Moscow (2011)

2. The Federal State Standard of Basic General Education (Федеральный государственный
образовательный стандарт основного общего образования). Prosveshcheniye publishers,
Moscow (2011)

3. The Exemplary Basic Educational Program for Educational Institutions. Primary School
(Примерная основная образовательная программа образовательного учреждения.
Начальная школа). Prosveshcheniye publishers, Moscow (2011)

On Abstraction and Informatics

Tom Verhoeff

Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

The Netherlands
T.Verhoeff@tue.nl

Abstract. One often hears, and less often reads, the claim that infor-
matics and its application is so difficult because it involves demand-
ing abstractions. Abstractions in informatics supposedly are even harder
than those in mathematics and the physical sciences. If abstraction is so
important in informatics, then you would expect that we have good ways
of dealing with it and communicating about it. To some extent, this is
indeed the case, but unfortunately these ways are not widespread. It is
our duty to get to grips with abstraction, and especially to address it in
the teaching of informatics.

In this article, I will not solve the problems posed by abstraction, and
certainly not the problem of teaching abstraction. But I would like to put
it more prominently on the agenda. In order to deal with abstraction, you
will have to investigate it, dissect it, analyze it, establish terminology, etc.
I will give a, somewhat personal, overview of abstraction, showing that
it is not a single, atomic concept, but a diverse complex of interrelated
concepts. It is my hope that this will help in embedding abstraction more
explicitly in the informatics curriculum.

1 Introduction

Abstraction is often mentioned as explanation for why informatics1 is so difficult.
Let me quote a few of the more explicit authors. Bucci et al. start their paper [5]
as follows.

“Abstraction is one of the cornerstones of software development and is
recognized as a fundamental and essential principle to be taught as early
as CS1/CS2. Abstraction supposedly can enhance students’ ability to
reason and think. Yet we often hear complaints about the inability of
CS undergraduates to do that.”

In 2006, Kramer and Hazzan organized an ICSE workshop on The Role of Ab-
straction in Software Engineering. Their summary [18] explains:

1 I use the term informatics as synonymous with computer science.

2

“The rational for the workshop stems from the observation that some
software engineers seem to be able to produce clear, elegant designs and
programs, while others cannot. Abstraction is suggested as the source
for this phenomenon, i.e., that some engineers lack the ability to think
abstractly and to exhibit abstraction skills . . . ”

Kramer later elaborated on this theme in [19]. Wing states squarely in [27]:

“The essence of computational thinking is abstraction. In computing,
we abstract notions beyond the physical dimensions of time and space.
Our abstractions are extremely general because they are symbolic, where
numeric abstractions are just a special case. . . . [O]ur abstractions tend
to be richer and more complex than those in the mathematical and
physical sciences.”

The IEEE-ACM computing curriculum recommendations [1] also recognize the
importance of abstraction in informatics. In [2, p.8], the task force writes:

“Software engineering differs from traditional engineering because of the
special nature of software, which places a greater emphasis on abstrac-
tion, modeling, information organization and representation, and the
management of change. . . . An important aspect . . . is that the sup-
porting process must be applied at multiple levels of abstraction.”

Saying that abstraction is important is one thing. Explaining what abstraction
is and how to teach it are quite other matters. Bucci et al. express this even
more strongly in their paper [5], titled ‘Do We Really Teach Abstraction?’:

“It is the central claim of this paper that, despite broad agreement about
their fundamental importance, both information hiding and abstraction
are severely shortchanged by current CS1/CS2 pedagogy. More specifi-
cally, we claim that standard pedagogical practices tend to compromise
the human dimension of information hiding and fall well short of help-
ing student learners to realize an increased ability to reason and think
carefully and rigorously as a benefit of using abstraction.”

1.1 Overview

In this article, I make an attempt at dissecting the notion of abstraction, es-
pecially, the way in which it plays a role in informatics. Section 2 considers
abstraction from a philosophic-linguistic-psychologic point of view. Sections 3
and 4 address abstraction in mathematics and physics. In Section 5, I elaborate
on the use of abstraction in informatics, and Section 6 focuses on the issues of
teaching abstraction. Section 7 concludes this article.

Let me hasten to say that this article is not intended to serve as an example
of how to incorporate abstraction into the informatics curriculum. The intention
is to stimulate and organize the discussion about abstraction and its teaching.

3

2 Abstraction in Abstracto

Abstraction is itself a highly abstract notion; try explaining it to a six-year old
child. That child can already handle some pretty abstract concepts: counting
numbers, colors, relationships like brother and sister, but usually not abstract-
ness itself. Let us first look at the various word usages involving abstraction, as
it concerns us here (there are other meanings, not relevant for our discussion).

to abstract (intransitive verb; used with ‘from X’) to ignore or suppress as-
pects (X) that are considered irrelevant for the purpose at hand

abstraction (noun) the act of abstracting; also, the result of abstracting
abstract (adjective) the quality of being the result of abstracting; opposite of

concrete

When speaking about abstraction, it is always important to ask: abstracting
from what? For example, when counting people in a village, you ‘abstract from
the identity of the persons counted’. By the way, when counting, you abstract
from more than just identity; you abstract from everything but numerosity (car-
dinality). It is noteworthy that with this verb we typically can and do say what
is suppressed (X, ‘identity’ in the example), but with this verb it is not so easy
to say what is (intended to be) preserved (‘number’ in the example). You could
try to do so by adding ‘obtaining Y ’, although that does not sound so well:
‘abstract from the identities obtaining (just) a number’. Also note that this verb
concerns an action, transforming an initial ‘concrete’ ‘thing’ (before abstracting;
like a group of people) into a resulting ‘abstract’ ‘thing’ (after abstracting; like
a number).

The example of counting as a form of abstraction is relatively straightforward.
Abstraction, however, also concerns the creation of new notions from existing no-
tions, by ignoring certain features that are deemed irrelevant in the new notion.
The case of counting is relatively straightforward when the notion of cardinality
is already known. But what about a situation where you want to introduce a
new notion, something that is not yet known? You can try to say what to ig-
nore, but not what it is that you want to obtain, because that is precisely what
is being defined. For example, how to define the notion of probability when this
notion did not yet exist? I will get back to this in Section 3, when dealing with
abstraction in mathematics.

Note that the invention of new notions is a creative act, and an important
aspect of doing science (also see Section 4 on physics). Epistemology is the branch
of philosophy concerned with knowledge and its creation. But the creation of
new notions is important in teaching too, because people are not born with
the latest notions from science embedded in their brains. The situation of a
student resembles that of the initial inventors of those concepts. So, the process
of creating new notions is not a one-time thing, but is repeated every time a
person tries to understand an unfamiliar notion. Since abstraction is one of the
most effective ways to define new notions, teachers should be well aware of this
mechanism, so that they can properly guide their students.

4

Why is abstraction needed at all? The main reason derives from cognitive
limitations of the human mind. We, human beings, have very limited processing
powers. Our short-term memory can store only a few ‘chunks’ of information at
a time. Traditionally, this limit was believed to be ‘seven plus or minus two’ [24],
but recent research has decreased that limit to approximately four [6]. By ap-
plying appropriate abstractions, we can concentrate on relevant information and
ignore everything else. Without abstraction, our minds would be overwhelmed
with information and we would not be able to function as effectively as we do.

It is good to point out some misconceptions about abstraction. Abstraction
is not the same as vagueness or imprecision, although these also concern ways
of limiting information content. Unfortunately, half-baked attempts at teaching
abstraction get no further than just vague and imprecise bluffing.

Dijkstra expresses the need and the misconception crisply in his Turing
Award Lecture [13]:

“We all know that the only mental tool by means of which a very finite
piece of reasoning can cover a myriad cases is called ”abstraction”; as
a result the effective exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a competent programmer.
In this connection it might be worth-while to point out that the purpose
of abstracting is not to be vague, but to create a new semantic level in
which one can be absolutely precise.”

Another misconception is that abstract–concrete is a dichotomy, a black-and-
white thing. In linguistics this seems to be the case, where you have concrete
entities (people, rocks, paper, scissors) and abstract notions (number, color, re-
lationships). But in scientific usage, and especially in informatics, abstraction
concerns a gradual scale. You can abstract from several aspects, one by one,
in separate abstraction steps, yielding a sequence of intermediate concepts of
increasing abstraction. Thus, abstract–concrete is a relative relationship: B can
be more abstract than C, and A can in turn be more abstract than B. This gives
rise to multiple levels or layers of abstraction.

All of this shows that abstraction is not an easy concept, both from a lin-
guistic and a philosophic point of view. Still, that is no reason to shy away from
it. On the contrary, it poses an important challenge to be tackled.

3 Abstraction in Mathematics

Mathematics is a good place to start digging into the notion of abstraction,
because it is itself abstract (a purely mental construction), and a rigorous disci-
pline, which developed precise ways of defining abstractions. As such, it is also
an important foundation for informatics. Devlin argues this in [12]:

“The main benefit of learning and doing mathematics is that it develops
the ability to reason about formally defined abstract structures like those
in computer science and its applications.”

5

How are mathematical concepts defined? Basically, there are only two methods:

– axiomatically, by postulating a collection of defining properties
– in terms of existing concepts, possibly through abstraction

I do not want to get sidetracked into the philosophy of mathematics, more partic-
ularly, into the ontology of mathematical objects. So, the following presentation
is necessarily simplified. A well-known example of the axiomatic method is the
introduction of the concepts of Euclidean geometry. The definitions of point,
line, and incidence do not tell what these concepts are in themselves. Instead,
they postulate relationships, that together sufficiently define those concepts to
do mathematics, that is, to formulate and prove interesting theorems. For in-
stance, Euclid’s first axiom states that two distinct points determine a unique
line incident on these points. Similarly, the Dedekind–Peano Axioms define the
natural (counting) numbers, and the Zermelo–Fraenkel Axioms define sets. The
biggest danger of axiomatic definitions is inconsistency, i.e., that the concepts
intended to be defined actually cannot exist, because the axioms contradict each
other. This is typically a hard problem, or even impossible to resolve.

In the second method, new concepts are defined in terms of existing concepts.
Therefore, such definitions are more easily shown to be valid (consistent). For
instance, a (mathematical) graph is defined as a pair (V,E) where V is a set
(whose elements are called vertices) and E ⊆ V × V is a set of vertex pairs
(called edges).

3.1 Definition by Abstraction

An important variant of this second method is the definition by (logical) ab-
straction. The integer numbers can be defined as ‘signed’ natural numbers, i.e.,
as pairs of a plus or a minus sign, and a natural number, where plus zero and
minus zero are the same thing. More elegant, however, is the following definition
involving the set P = N×N (pairs of natural numbers) and the relation ∼ on P
defined by

(a, b) ∼ (c, d)⇐⇒ a + d = b + c (1)

This definition is expressed in terms of existing concepts, viz. addition and equal-
ity of natural numbers and well defined for all a, b, c, and d. If you already know
the integer numbers, then I can reveal to you that the pair (a, b) ∈ P is intended
to ‘correspond’ to the integer a − b (like the way bookkeepers avoid negative
numbers by working in two columns). Note, however, that a − b is not (yet)
defined for natural numbers a and b when a < b. Relation (a, b) ∼ (c, d) intends
to capture a − b = c − d, which is equivalent to the right-hand side of (1). But
you do not need to know all that to read the definition.

It turns out that relation ∼ is an equivalence relation, i.e., it is reflexive
(p ∼ p), symmetric (p ∼ q implies q ∼ p), and transitive (p ∼ q and q ∼ r implies
p ∼ r). An equivalence relation on a set P partitions P into disjoint nonempty
subsets, such that equivalent elements are in the same part, and non-equivalent

6

elements are in distinct parts. The set Z of integer numbers is now defined as
the set of equivalence classes in P under ∼. That is, each equivalence class, i.e.,
set of ∼-equivalent pairs of natural numbers, is an integer number in Z. This is
also written as Z = P/∼, the ‘quotient’ of P and ∼. The equivalence relation
is ‘divided out’; the distinctions between equivalent pairs are ‘erased’ by uniting
them into a single new ‘concept’, called integer number. The integers are, thus,
obtained as pairs of natural numbers where we abstract from the distinction
between pairs satisfying (1).

At first sight, this looks like a horribly complicated definition, because an
integer now ‘is’ a set of ∼-equivalent pairs of natural numbers. For these integers,
one can define operations like addition, subtraction, and multiplication, and
prove their basic properties. Further analysis shows that every pair in P is ∼-
equivalent either to a pair of the form (a, 0), which can be identified with the
natural number a, or to a pair of the form (0, a) with a > 0, which is usually
written as −a. Once, this is done, you no longer need to worry about the fact
that an integer was defined as such a horribly complicated object. You can
simply use the properties, and think of integers as ‘atomic’ objects. The quotient
construction merely proves the consistency of the properties. It is an ‘internal’
concern for foundationalists that need not concern mere users of the integers.

Once one is familiar with the method of definition by abstraction, it becomes
a powerful tool. In fact, every abstraction can be can be viewed as abstracting
from an appropriate equivalence relation. For instance, the rational numbers can
be defined by abstracting from the equivalence relation ∼′ defined by

(a, b) ∼′ (c, d)⇐⇒ a× d = b× c (2)

on pairs of integer numbers, where the second element is nonzero. Defined in
this way, rational numbers involve two layers of abstraction based on equivalence
relations (1) and (2).

3.2 How to Work with Definitions

How one handles a definition, depends on its nature. Axiomatic definitions are
eliminated not by applying them to a single concept, such as a geometric point,
but by applying them to a suitable combination of concepts that are related
through an axiom, such as two distinct points that yield a line incident on those
points.

Definitions in terms of existing concepts can be eliminated by substitution.
For instance, the number M(a, b) halfway between numbers a and b can be
defined as (a + b)/2. When you want to prove something about M(x + y, x− y),
you can simply eliminate M by substitution, obtaining ((x + y) + (x − y))/2,
which incidentally can be further reduced to x.

There is one exception to this elimination: recursive definitions. These involve
a new mechanism, where something is, partly, defined in terms of itself. For
instance, n! (n factorial) can be defined for natural numbers n ≥ 0 by

n! =
{

1 if n = 0
n× (n− 1)! if n ≥ 1 (3)

7

When you want to prove something about an expression of the form (a + b)!,
you cannot simply eliminate ! by substitution. You need to resort to induction.
In teaching, the notions of recursion and induction are always challenging [29].

Category Theory can be viewed as the summum of abstraction in mathe-
matics. It is a theory about mathematical structure in very general terms, with
functions as fundamental notion. I am not saying that you need to study Cat-
egory Theory before teaching about abstraction. But it does serve to illustrate
how the suppression of internal details makes for new ways of defining things.
The traditional definition of an injective function (injection or one-to-one func-
tion) is as follows. Function f : A→ B is called injective when

f(x) = f(y) implies x = y, for all x, y ∈ A (4)

This definition involves the application of the function to arguments, thereby re-
lying on ‘internal details’ of functions. In Category Theory, functions are usually
referred to as morphisms, and an injection is called a monomorphism. Mor-
phism f : A→ B is called a monomorphism when

f ◦ g = f ◦ h implies g = h, for all g, h : Z → A (5)

where ◦ denotes morphism composition; in traditional terms: (g◦f)(x) = f(g(x)).
Definition (5) is point-free, i.e., only relies on ‘external features’ of morphisms,
without applying them to specific arguments. The definition of an epimorphism
(surjective function) is a completely analogous dual of (5):

g ◦ f = h ◦ f implies g = h, for all g, h : B → Z (6)

Compare this to the traditional definition, which looks very different from (4):

(∀ y ∈ B : (∃x ∈ A : f(x) = y)) (7)

Thus, (5) and (6) are more abstract than (4) and (7). This also relates to func-
tional programming (see Section 6).

On one hand, mathematical concepts are abstract and people often express
having difficulty with mathematics. On the other hand, recent research [10,25]
has revealed that the human mind is born with powerful innate abstraction
abilities. For instance, even newly born babies already have an innate ability to
handle small numbers ‘in the abstract’. This partly overthrows the traditional
cognitive development sequence as described by Piaget, where abstract thinking
would only appear in the formal operational stage at the age of twelve or so.

In [11], Devlin makes the case that the human brain has evolved to deal
with precisely those abstract structures that are mathematically important. His
argument runs as follows. Human beings are relatively weak, both on attack and
defense, compared to most (other) animals. In order to survive, they have had to
evolve brain structures to cooperate in larger groups. Such cooperation requires
that the brain keeps track of relationships among people in groups. It is precisely
such networks of relationships that are important in mathematics as well. All
human brains are basically equipped to deal with mathematical structures. Why
not everybody is a math whiz, is another story (see [11]).

8

4 Abstraction in Physics

Abstraction in the physical sciences serves a similar purpose as in mathematics,
viz. to define concepts. These concepts are used to describe (laws of) nature.
They are abstractions created by the human mind. Think of concepts like mass,
force, energy, and temperature. In contrast to mathematics, such concepts are
intended to have a link to the concrete physical world. Here we have a clear jump
from concrete to abstract. After abstraction, we end up in the mathematical
world.

One particularly important abstraction step in physics concerns the way a
system’s behavior over time is modeled. A dynamical system is difficult to ana-
lyze when you try to ‘think it through’, tracing all changes over time. Your mind
is soon overwhelmed. The key idea is to capture such behavior by considering the
system’s state as a function of time. This function is a single entity, containing
all information that is relevant. Such functions can be handled at a higher level
of abstraction. For instance, a law can be expressed as a differential equation
involving the system’s state function. All of time is handled in one swoop.

Under the heading “The Simplification of Science and the Science of Simpli-
fication” in [26, pp.8–12], Weinberg discusses Newton’s Law of Universal Grav-
itation (by Feynman called “the greatest generalization achieved by the human
mind”). This law expresses the attractive force between two bodies as function
of their mass and distance. First of all, he notes that this law implicitly says that
the attractive force does not depend on anything other than the two masses and
their distance. One can abstract from everything else, a huge abstraction. When
Newton used his law to analyze our solar system, he had to apply further ab-
stractions. In particular, to calculate a planet’s orbit, he focused on the sun and
that planet only, ignoring all other masses and (non-gravitational) influences.
Weinberg writes:

“Newton was a genius, but not because of the superior computational
power of his brain. Newton’s genius was, on the contrary, his ability to
simplify, idealize, and streamline the world so that it became, in some
measure, tractable to the brains of perfectly ordinary men.”

5 Abstraction in Informatics

In informatics and its application, both the mathematical and the physical kind
of abstractions play a role. When automating the processes in a car, the software
will somehow have to be related to various (physical) car parts. In the software,
these parts exist as abstractions. This kind of physical abstraction is encountered
when modeling the problem domain. As with physics, information processing
systems involve behavior over time, where the notions of state and state change
in a state space are important. Also see [9], [16, Ch.1], [3], and [28].

The definition of models, both for the problem domain and the solution
domain, involve the mathematical kind of abstractions. The main abstractions
in theoretical informatics concern the notions of algorithm and information.

9

The reason that abstraction plays a more important role in informatics than
in other disciplines, is that the description of every program involves the creation
of new abstractions to define the data and the operations. To aid the definition
of data and operations, many predefined generic abstractions are available, and
must have been mastered.

Programming tools offer various layers of abstractions on top of the hard-
ware that executes the programs. Compilers, interpreters, operating systems,
and run-time libraries translate high-level descriptions into low-level instruc-
tions. Furthermore, modern programming languages provide abstraction mech-
anisms to aid in the description of data structures and algorithms. Let us briefly
look at some of these abstraction mechanisms (see e.g. [20]):

procedural abstraction: mechanism to define parameterized routines (func-
tions, procedures, methods) usable as an action

data abstraction: mechanism to define parameterized (generic) data types
(sets of values with associated operations)

iteration abstraction: mechanism to iterate over a collection, processing each
element once; there are also many loop patterns

Note that non-recursive routine and data type definitions can be eliminated by
a double substitution: substitute actual for formal parameters, and substitute
the body or representation for the invocation or occurrence.

These mechanisms share a number of features:

– abstraction from operational and representational implementation details,
as seen from the user’s perspective;

– abstraction from the identity (in case of procedural abstraction) or type (in
case of data abstraction) of data involved, via parameters;

– abstraction from context of usage2, as seen from the provider’s perspective.

They involve two sides: a user or client side and a provider or server side.
These sides are completely separate, except for a two-sided contract that specifies
the defined entity, thereby serving as an interface. In reasoning about these
abstractions, it is mandatory (for otherwise the abstraction loses its value) to
avoid reasoning that relates the user context and the provider context directly to
each other (basically, by carrying out the substitution mentioned above). Instead,
both the user context and the provider context should solely be related to the
agreed contract. For instance, in the case of routines, the contract is expressed
in terms of a precondition and a postcondition (also see Fig.1):

– The user takes care that the precondition holds.
– The provider exploits this precondition and takes care of the postcondition.
– The user exploits this postcondition.
– The user need not know how the routine does its work.
– The provider need not know how the parameters and result are used.

2 This abstraction is often not mentioned, but equally important as the first.

10

Two-sided Contract
Precondition Postcondition

User concern benefit
Party ↓ ↑

Provider benefit → concern

Fig. 1. The relationships in two-sided contracts for routines

We see here that abstraction appears in many disguises, going by such names
as divide and conquer, separation of concerns, modularization, generalization,
Design By Contract, encapsulation, information hiding, modeling and design
patterns, etc. These techniques aim at managing complexity through abstraction.

In software development, the path from specification to implementation in-
volves multiple refinement steps, going from abstract models to more concrete
code. In the analysis of existing systems, models need to be constructed for those
systems, thus going from concrete to more abstract.

6 Teaching Abstraction

Many textbooks present various abstraction mechanisms in programming lan-
guages, but most do so implicitly. One of the more explicit textbooks is [20].
Others textbooks present modeling and design techniques, again with limited
attention for abstraction. The pedagogy of abstraction in informatics has not
been studied deeply. Useful articles are [5,14,17,19]. The teaching of abstraction
must be based on a long-term plan. Abstraction cannot be taught in a few lessons;
it must be infused over many years. That requires a carefully tuned curriculum.
Offering curricular advice is beyond the scope of this article. In summary, [17]
advises to start early; to teach abstraction consciously; to stress the benefits of
using abstraction. I would like to add: teach it in small steps.

The question remains: How to do so? Consider the case of teaching ab-
straction mechanisms like parameterized procedures and Abstract Data Types
(ADTs). In a traditional approach, you teach such mechanisms by explaining and
practicing the steps involved in the order of the development process; see Fig. 2
(left). The student then always works toward the unknown. An alternative ap-
proach is backward chaining, which I learned from [8, p.38] (also see [4]). Here, a
process consisting of several steps is taught in reverse order, by starting with the
last step, and successively adding preceding steps, one by one; see Fig. 2 (right).
In backward chaining, the student always works toward familiar steps. Backward
chaining is also applied successfully in sports, music, and military training. It
resembles Meyer’s inverted curriculum and outside-in method [21,23]. It would
be interesting to see whether abstraction in informatics can be captured in a set
of Meyer’s TRUCs [22], i.e, testable and reusable units of cognition.

Unfortunately, many modern programming languages, like C, C++, C#, and
Java do not provide sufficient support for abstraction. For instance, only the
syntactic part of contracts can be expressed as part of the program, while the

11

In the development process, you

(1) Draw up a contract for an abstraction
(2) Validate the contract
(3) Design/implement it (can be split)
(4) Review the design/implementation
(5) Test the implementation
(6) Use the abstraction

In backward-chaining, you learn to

(1) Use an abstraction, given its contract
(2) Test an abstraction, given its contract
(3) Review a given design/implementation
(4) Design/implement a given contract
(5) Validate contracts
(6) Draw up a contract for an abstraction

Fig. 2. Forward and backward chaining

semantic part must be expressed as comment. The contract for a function cannot
be named separate from its implementation. There are some add-on features for
these languages, but they are not appropriate for teaching. Eiffel [23], Perfect
Developer [7], and RESOLVE [5] are a considerable step in the right direction.

The role of efficient and effective notation should not be underestimated [15,
Ch.16]. In this respect, functional and declarative languages are better alterna-
tives than imperative languages. But they are —unrightfully— too often avoided
in teaching, probably because of the higher level of abstraction. I agree with [5],
in that we need to teach students about abstract mathematical notions, like
sets, mappings, relations, bags, and sequences, before they start to develop im-
plementations. They need these notions to read proper contracts and to express
models without thinking in terms of implementations. But it is also important
that model-oriented specifications are complemented by property-oriented spec-
ifications (resembling the axiomatic definitions in mathematics). In particular,
reasoning about abstractions is underexposed.

7 Conclusion

We have looked at abstraction from various angles, especially as it plays a role
in informatics. It is important that abstraction is properly integrated into infor-
matics teaching. Our hope is that this overview will organize and stimulate the
discussion on how to teach abstraction in the informatics curriculum.

References

1. ACM–IEEE Joint Task Force on Computing Curricula. Computing Curricula 2001
Computer Science: Final Report. Dec. 2001.
www.acm.org/education/curric_vols/cc2001.pdf (accessed Apr. 2011)

2. ACM–IEEE Joint Task Force on Computing Curricula. Software Engineering 2004:
Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering.
Aug. 2004. sites.computer.org/ccse/SE2004Volume.pdf (accessed Apr. 2011)

3. Dines Bjørner. Software Engineering 1: Abstraction and Modelling. Springer, 2006.
4. B. Brandon. “Last Things First: The Power of Backward Chaining”, The eLearning

Developers’ Journal, Oct. 2003.
5. P. Bucci, T. J. Long, B. W. Weide. “Do We Really Teach Abstraction?”, SIGCSE

Bull., 33(1):26–30 (Feb. 2001).

12

6. Nelson Cowan. “The Magical Number 4 in Short-Term Memory: A Reconsideration
of Mental Storage Capacity”, Behavioral and Brain Sciences, 24(1):87-114 (2001).

7. D. Crocker, J. Carlton. “Perfect Developer: what it is and what it does”, FACS
Facts, newsletter of the BCS Formal Aspects of CS special interest group, Nov.
2004. www.eschertech.com/papers/introduction_to_perfect_developer.pdf

(accessed Apr. 2011)
8. E. de Bono. Teach Your Child How to Think. Penguin, 1994.
9. O.-J. Dahl, E. Dijkstra, C. Hoare, Structured Programming, Academic Press, 1972.
10. S. Dehaene. The Number Sense: How the Mind Creates Mathematics. Oxford Univ.

Press, 1997.
11. K. Devlin. The Math Gene: How Mathematical Thinking Evolved and Why Num-

bers Are Like Gossip. Basic Books, 2000.
12. K. Devlin. “Why universities require computer science students to take math”,

Communications of the ACM, 46(9):36–39 (Sep. 2003).
13. E. W. Dijkstra. “The Humble Programmer” (Turing Award Lecture 1972).

www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD340.html (accessed
Apr. 2011)

14. P. Frorer, O. Hazzan, M. Manes. “Revealing the Faces of Abstraction”, Inter-
national J. Computers for Mathematical Learning. Kluwer Academic Publishers,
2(3):217–228 (Oct. 1997).

15. A. J. M. van Gasteren. On the shape of mathematical arguments. LNCS 445,
Springer, 1990.

16. Hans Jonkers. Abstraction, Specification and implementation techniques: with an
application to garbage collection. Dissertation, Eindhoven Univ. of Technology, 1983.

17. H. Koppelman, B. van Dijk. “Teaching abstraction in introductory courses”, Pro-
ceedings of the fifteenth annual conference on Innovation and technology in computer
science education ITiCSE ’10, pp.174–178 (2010).

18. J. Kramer, O. Hazzan. “Summary of an ICSE 2006 Workshop: The Role of Ab-
straction in Software Engineering”, ACM SIGSOFT Software Engineering Notes,
31(6):37–42 (Nov. 2006).

19. J. Kramer. “Is Abstraction the Key to Computing?” CACM 50(4):36–42 (Apr.
2007).

20. B. Liskov, J. Guttag. Program Development in Java: Abstraction, Specification,
and Object-Oriented Design. Addison-Wesley, 2001.

21. Bertrand Meyer. “The Outside-in Method of Teaching Introductory Program-
ming.” In M. Broy and A. V. Zamulin (Eds.), Ershov Memorial Conference, LNCS
2890:pp.66–78. Springer, 2003.

22. B. Meyer. “Testable, Reusable Units of Cognition”, IEEE Computer, 3(4):20–24
(Apr. 2006)

23. B. Meyer. Touch of Class: Learning to Program Well with Objects and Contracts.
Springer, 2009.

24. George A. Miller. “The Magical Number Seven, Plus or Minus Two: Some Limits
on our Capacity for Processing Information”, Psychological Review, 63:81-97 (1956).

25. D. A. Sousa. How the Brain Learns Mathematics. Corwin Press, 2008.
26. G. M. Weinberg. An Introduction to General Systems Thinking. Wiley, 1975.
27. J. Wing. “Computational thinking and thinking about computing”, Phil. Trans.

R. Soc. A, 366:3717–3725 (Jul. 2008).
28. Niklaus Wirth. “A Brief History of Software Engineering”, IEEE Annals of the

History of Computing, 30(3)32–39 (July–Sept. 2008).
29. D. R. Woodal. “Inductio ad Absurdum?”, Mathematical Gazette, 59(408):64–70

(Jun. 1975).

Metaphorical Geometry

Michael Weigend1,2 and Vaiva Grabauskiene
3,4

1 Holzkamp-Gesamtschule Witten, Willy-Brandt-Str. 2, 58452 Witten, Germany,
2 University of Münster, Fliednerstr. 21, 48149 Münster, Germany,

michael.weigend@uni-muenster.de
3 Vilnius University, Akademijos Str. 4 LT-08663 Vilnius, Lithuania

4
Vilnius Pedagogical University, Studentų Str. 39, LT-08106, Vilnius, Lithuania

vaiva.grabauskiene@vpu.lt

Abstract. Interpreting and creating metaphorical algorithms can be considered

as a facet of computational thinking. This paper presents the results of a study

that was performed with 97 students from German schools in the age of nine to

thirteen years. The children had to interpret metaphorical algorithms that

explained how to change images composed of simple geometric shapes. The

results were analyzed with respect to typical geometric mistakes and levels of

abstraction.

Keywords: algorithm, metaphor, geometry, abstraction, computational

thinking.

1 Introduction

Broadly speaking, an algorithm is an effective method for calculating a function or

solving a problem. It consists of a limited number of instructions, which describe

operations precisely enough to be executed automatically by a machine. Algorithms

can be expressed in many ways. They may be written in natural language for human

readers. The point is that it must be possible to refine and formalize the algorithm to a

program that can be interpreted by a computer.

Sometimes a sophisticated sequence of abstract geometrical operations can be

described metaphorically by referring to an act of manipulating real things. For

example, peeling an orange may be considered as a metaphor for subtracting two

concentric spheres. For most people, “peeling an orange” is a holistic concept of

activity. It is intuitive, subjectively certain knowledge. Referring to this familiar

concept in a metaphorical way might make a geometrical algorithm easier to

comprehend.

In cognitive linguistics metaphors are considered as cross-domain conceptual

mappings [1]. They project knowledge from a well known source domain onto a

target domain. In contrast to rhetoric, in cognitive linguistics metaphors are primarily

not a matter of language but of thought. People use metaphors to understand the world

and also to communicate this understanding.

Metaphors are used while creating computer programs on several levels of

abstraction:

In Extreme Programming a software development starts with a “project metaphor”

describing the idea of a whole software system in one holistic concept. Example: A

metaphor for an agent-based information retrieval system is a “hive of bees, going out

for pollen and bringing it back to the hive.”[2] Well known high level metaphors are

“World Wide Web” or the “scan line” in algorithmic geometry.

Data structures or standard classes like stacks and queues are metaphors projecting

knowledge about physical collections onto the domain of data processing. For

example, a physical stack of plates supports certain access-operations: You can only

remove the top plate (pop) and put a new plate on top of the stack (push). This

structure is adopted in the data type called “Stack”.

An assignment like a = b is often interpreted adopting one of these metaphors:

(1) Names are labels. “Put a new label „a‟ at the object already labeled with „b‟”. (2)

Names are containers. “Put a copy of the content of container „b‟ into container „a‟.

Using a high level programming language a programmer has a lot of freedom to

structure and phrase an algorithm. By choosing appropriate names, a program can be

written in a metaphorical style. The primary goal is not to make the text more

interesting but to increase its comprehensiveness. Thus, metaphorical thinking can be

considered as a facet of programming competence.

2 Metaphors and Computer Programming

In this section we discuss three cognitive operations connected to metaphorical

thinking during program development:

 Finding metaphors (searching for appropriate source domains)

 Switching between different metaphors (changing related sources)

 Adapting program code to metaphors (changing the target).

Consider the following Python program. It consists of a class definition, the

definition of a function processing instances of the new class, and a few lines of code,

creating instances .of the class, calling the function and printing the result.

class Thing():

 def __init__(self, name, weight):

 self.name=name

 self.weight = weight

def collectSmallThings (maxWeight, box):

 bag = [] #1

 for thing in box: #2

 if thing.weight <= maxWeight:

 bag.append(thing) #3

 return bag

stationery = [Thing("paper", 1), Thing("stapler", 0.2),

 Thing("pen", 0.1)] #4

smallThings = collectSmallThings (0.2, stationery) #5

print([item.name for item in smallThings])

Instances of class Thing represent things with a name and a weight. In line #4 a

list consisting of three instances of Thing (representing stationery items) is created.

In line #5 a new list representing items weighing less than 0.2 kg is created by calling

the function. Finally a list with the names of the small items is printed. The output is:

['stapler', 'pen']

We are going to discuss the function definition. The programmer has the freedom

to choose arbitrary names for all kinds of objects including functions and parameters.

The names of the function (collectSmallThings), its parameters (maxWeight,

box) and the local variable (bag) induce a coherent meaningful story, metaphorically

explaining how the function works: The agent (executing the function) gets a box

with things in it and a maximal weight. He takes an empty bag (line #2). Then he

weighs all things in the box. If the weight of a thing is equal or less than the maximal

weight, a copy of it is put into the bag. At the end the agent returns the bag with the

small things to the client, who has called the function.

While choosing names, the author of this program had to invent a story like this.

This implies finding appropriate metaphors for activity (operation 1): taking a box,

collecting things in a bag and returning the bag. The box and the bag are implemented

by Python lists, instances of an already existing (built-in) class modeling sequences of

objects. This technical detail is irrelevant for phrasing the iteration for thing in

box A problem occurs in line #3. A new item is added to the list named bag.

The name of the operation is append(). This name only makes sense in connection

with a sequence not with a bag. You put things into a bag but you cannot append

something to a bag. Thus, in this line a metaphorical shift takes place (operation 2).

The program text induces the idea that you have a chain of things that can be

extended by appending new items.

One can amend this inconsistency by introducing a new class named Bag,

modeling bags for collecting things.

class Bag ():

 def __init__ (self):

 self.content = []

 def collect (self,thing):

 self.content.append(thing)

Instances of the class Bag have the attribute content, which is a standard list. The

method collect() appends an object to this list. No functionality is added by the

new class. The only effect is that Bag-object fits to the metaphor “collecting things in

a container “. That means, the program code is adapted to a metaphor (operation 3)

that describes the algorithmic idea on a higher level of abstraction. In real life

software projects such operations take place in a refactoring phase, when the naming

of objects is changed in order to increase the readability of the code.

3 Metaphors in Geometry

In the study which is presented later we have tried to investigate to what extend

students in the age of 10 to 12 are able to understand and create metaphorical

instructions that describe how to transform an image consisting of two-dimensional

geometrical shapes (straight lines, rectangles, triangles and circles) to another image.

Metaphorical interpretations of geometric shapes are common in everyday life. A

simple geometric image with a funny metaphorical meaning is called a droodle.

Figure 1 depicts a few examples.

Fig. 1. Droodles: (1) Bear climbing up a tree (seen from the other side of the tree), (2) a fried

egg making a head stand, (3) an octopus signaling that he is going to turn left.

Torreano et al. [4] suggest that a metaphorical term is a prototype of a category.

Therefore the metaphorical meaning is more abstract (less specific) than the literal

meaning. Based on this idea they define levels of abstraction. The more abstract an

expression the more facets of the literal meaning are missing in the more abstract

metaphoric meaning. Consider the two statements

1) “The dog flew across the yard.”

2) “The rumor flew across town.”

The second usage of the verb “to fly” is more abstract than the first. In its context

free meaning “to fly” refers to swift physical movement through the air. That implies

high speed, a physical entity and airborne. In the first statement the metaphorical

meaning abstracts from “airborne” and in the second statement the facets “airborne”

and “physical entity” are omitted. Torreano et al. found out that most people consider

more abstract metaphors as “more metaphorical”.

Torreano‟s language-related principle for defining levels of abstraction can be

transferred to conceptual metaphors for geometric transformations. Consider the

following two algorithms (figure 2). They are from tasks we used in workshops with

fourth- and sixth-graders (see below).

1) “There are two trees standing side by side on a meadow. A couple of years later

the trees have been grown. Tina connects the trunks with a string. How does it look

like now?” (figure 2, first picture)

2) “There are six horses on the meadow and an empty feeding trough. Someone

puts oat into the trough. The horses walk to the trough on the shortest way in order to

eat the oat. How does it look like now?” (figure 2, second picture)

Fig. 2. Two geometrical images to be transformed

These little text documents can – in a broad sense – be considered as simple

algorithms processing visual data. The given image is the input and the new image

that is to be drawn is the output.

The first algorithm uses a tree as a metaphor for a circle and the activity of growing

as a metaphor for increasing the radius. In this case the only abstraction is the

reduction of the tree‟s shape to a simplified projection from above. The activity

“growing” applied to a circle – as a two-dimensional projection of a tree– has no other

meaning than “increasing the radius” (see figure 3, left image).

In the second algorithm the metaphorical meaning of “horse” completely omits the

shape of the horse and the activity of eating at the end (see figure 3, right image).

Furthermore the motive for moving to the rectangle (trough) is ignored. Therefore, the

metaphorical phrasing of the second algorithm is more abstract that the phrasing of

the first.

Fig. 3. Expected results of the image transformations

Beside these metaphorical abstraction levels of the instructions there are further

dimensions of abstraction to be considered. When students execute an algorithm

transforming a geometric image they must be able to perform certain geometric

operations. According to the van Hiele model of geometric thinking there is an

increase of abstraction from simple visual thinking based on manipulating things to

strict and formal geometric thinking, independent from reality [5, 6].

4 A workshop on metaphorical geometry

In April 2011 we performed four workshops with 44 fourth-graders at an

elementary school and 53 sixth-graders at a comprehensive school in Germany. All

workshops had the same structure. They took approximately 50 minutes at the

elementary school and 45 minutes at the comprehensive school. The workshops

consisted of four parts:

Introduction. At the beginning, the children performed a physical exercise that was

supposed to give an idea about metaphorical algorithms. The moderator explained a

sequence of actions in two different ways: explicitly and metaphorically.

Explicit instruction: “Please stand up. Look to the ceiling. Raise your right hand.

Open your right hand and stretch your fingers in a way that they point to the ceiling.

Close your fingers. Take your arm down. Now do it again a few times: Raise your

right hand. Open your right hand ...”

Metaphorical instruction: “Imagine you are standing under a cherry tree. Above

your head there are all these wonderful cherries. Pick a few cherries with your right

hand. “

In the consequent discussion it was clarified that there are different ways to

describe activity. One girl (grade 6) put it like that “In the second explanation you just

told us about the cherry tree and we automatically did the right movements.” The

term “metaphor” was never used during the discussion. Instead we used the phrase

“describing by telling a story”.

Interpreting algorithms. In the second phase the students had to draw pictures

according to given metaphorical algorithms, written like stories. Each student got a

working sheet with four tasks. They served as models for the next step, when the

participants wrote algorithms on their own. Sometimes the students asked for help.

The moderators‟ scaffolding was limited to making sure that the students read the text

of the algorithm to the end and that they understand the meaning of every word.

Typical scaffolding phrases were “Read the first sentence again.”, “Read the whole

story from the beginning to the end”. The moderators never judged a student‟s

solution and never told whether or not a solution was correct. The questions on each

task were counted. The number of questions can be considered as an indicator of the

level of difficulty. This article focuses on this phase of the workshop.

Creating algorithms. In the next step the students got working sheets with two

corresponding images. They had to write a metaphorical algorithm that described how

to transform the first image to the second.

Quiz show. At the end of the workshop, the comprehensibility of some student-

made algorithms was tested following this pattern: A kid read a story aloud and three

class-mates (who did not know this specific problem) tried to draw a sketch on the

blackboard according to this.

5 Interpreting Metaphorical Geometrical Algorithm

In phase 2 of the workshop each student got a working sheet with four tasks. A

task consists of an image, an empty frame and a story (metaphorical algorithm) that

describes how to change the picture. Each story is structured like this (the examples

refer to the first task in figure 4).

 The first sentences interpret the given picture metaphorically. Example: “Round

paper balls and angular blocks made of iron are lying on the table.”

 Then the text describes some activity using the introduced metaphors. Example:

“Somebody has opened the window. The wind has blown away all paper balls. But

the iron blocks remain where they are.”

 The last sentence is “How does it look like?”

Fig. 4. Tasks from one of the two working sheets

The students had to draw the second picture in the empty frame. The intellectual

challenge was to understand the metaphorical algorithm and to perform geometrical

operations. At the end they had to judge the difficulty of the tasks by drawing an X at

the most difficult and a circle at the easiest task.

We used two different working sheets (A and B) with slightly different tasks, in

order to encourage independent working instead of copying the neighbor‟s solution.

Therefore there were altogether eight different tasks forming four groups with

different transformation principles. The examples in the following list are shortened

algorithms and refer to working sheet B, which is depicted in figure 4.

 Deleting. Example: The Wind blows away all round paper balls (B1).

 Moving. Example: Animals move to a rectangular feeding trough. (B2).

 Enlarging. Example: Someone opens the parasol standing beside a table. (B3)

Rotation. Example: A man with a big hat turns to the left until he touches the pole

with his right hand (B4).

On the basis of the metaphorical abstraction concept discussed in section 3 one can

allocate the tasks to two abstraction levels (abstraction level of task). The algorithms

related to deleting and enlarging are on a lower level than the algorithms related to

moving and rotation.

6 Results

Altogether 97 students participated at the workshops, including 46 girls and 50

boys (one person did not tell the gender). The average age was 10.8 years.

6.1 Difficulty of the tasks

Two indicators for difficulty were assessed: (1) The students‟ judging of the tasks by

marking the easiest and the most difficult task and (2) the number of students‟

questions related to a task.

Table 1. The difficulty of the tasks – self-estimation and number of questions

Task theme Abstraction

level of task

easy difficult questions

Deleting low 18 32 8

Moving high 5 29 9

Enlarging low 35 8 8

Rotation high 18 19 8

6.2 Levels of Metaphoric Understanding

Interpreting the given algorithms, the students drew pictures. These pictures

document how well the algorithm was understood. On the basis of a qualitative

analysis the solutions we introduce five levels of metaphorical understanding:

Incomprehension. A complete misunderstanding of the algorithm results in a

meaningless drawing which is not related to the task. An empty picture suggests that

the student did not understand the algorithm and did not know what to do. Both cases

belong to the incomprehension level.

Literal understanding. On this level the student understands the algorithm in a non-

metaphorical way without abstraction. The drawn picture is not geometric but

naturalistic. It depicts entities from the source domain of the adopted metaphor (e.g.

trees instead of circles; see figure 5, first image).

Basic metaphoric understanding. The student understands principally that the task

is to transform (change) a geometric image. Thus the drawing is geometric and not

literate regarding the algorithm. But the construction is not accurate. In many cases

the accuracy is restricted to one dominating property of the transformed entities (for

example the size or shape). Other features (for example position or color) are ignored.

This level corresponds to van Hiele‟s analytic/descriptive level.

Fundamental understanding. The student is able to interpret the metaphorical

algorithm in detail. No facet is omitted. The drawing depicts the geometric structure

after the transformation.

Integral understanding. The drawing depicts the geometric structure after the

transformation and contains additional information about the algorithm. In some cases

the paths of moving entities were depicted (figure 5, last image).

Fig. 5: Examples of algorithm interpretations on different comprehension level. Left: Literal

understanding. Right: Integral understanding with additional visualization of the paths.

Table 2. Students‟ comprehension of metaphorical instructions. ALT means the abstraction

level of the task. Comprehension levels are: incomprehension, literal, basic metaphorical,

metaphorical and integral understanding

Theme ALT Incompre-

hension

Literal Basic

metaphor.

Metaphor. Integral

Deleting low 9 11 55 20 2

Moving high 7 13 58 15 3

Enlarging low 2 10 59 25 0

Rotation high 16 35 29 17 0

Sum - 34 (9%) 69 (18%) 201 (52%) 77 (20%) 5(1%)

Some results of the evaluation are displayed in table 2. Obviously the algorithms

involving rotation were interpreted more often on a literal level of understanding than

the other algorithms. Altogether one might state that most tasks were done on the

basic metaphorical understanding level. Considering the age of the students, this

result corresponds to the findings by [5], [6] and [7] on the development of geometric

thinking.

Table 3 displays the person-related distribution of algorithmic comprehension

levels, which was rated on the basis of the overall-performance in four tasks.

Comparing 4
th

- and 6
th

-grade-students‟ comprehension levels, it turns out that literal

understanding is replaced by basic metaphorical understanding.

Table 3. Students‟ comprehension of metaphorical algorithms. Comprehension levels:

incomprehension, literal, basic metaphorical, metaphorical and integral understanding

Grade Incompre-

hension

Literal Basic

metaphorical

Metaphorical

Grade 4 (n=44) 2% 27% 55% 16%

Grade 6 (n=53) 0% 11% 74% 15%

6.3 Geometrical Accuracy

In psychological and pedagogical literature non-metric (topological, projection-based)

and metric aspects of geometrical images have been examined [8], [9].

The topological image information is related to the conception of shape. It

constitutes the basis of geometric image ontogenesis [8]. Topological errors are shape

deformations that are incompatible with the algorithm (figure 6 first image).

Projection-based aspects are the relations between shapes. Projection-related errors

are incorrect changes of positions, orientation and layout. Such errors usually show

the lack of practical experience related to the context (figure 6 second image).

Metric image information refers to the sizes of shapes or the number of parts a

segmented entity consists of. Metric images errors comprise all quantity and size

inaccuracies (figure 6 third image).

Fig. 6. Examples of geometric accuracy errors. (1) Topological: shape is not a regular hexagon,

(2) projection-based: circles (“animals”) should not be exactly at these positions (3) metric:

circles are too small.

To realize the visual quantitative properties of a geometric entity it is necessary to

identify and summarize its basic properties, taking into account the contribution made

by each element. Therefore, the successful formation of metric image information

requires a deep understanding of the shape under measurement [9]. Indeed, the results

in table 4 show that the metric aspects of the algorithmic image transformation were

the most difficult. Not much more than a third of all solutions were correct in this

respect.

Table 4. Percentage of correct image formation (388 task solutions)

 Topological Projection-

based

Metric

Correct image

formation 78%

62%

37%

6.4 Algorithmic Centration

Jean Piaget [10] had observed that young children (in the preoperational stadium)

focus on one aspect of a situation and neglect the others. He calls this tendency

centration. Geometric inaccuracy might be interpreted as a special form of centration.

The students just sketch an idea focusing on the most important and neglecting

details. Although being far beyond the preoperational stadium (which is typically in

the kindergarden age) many children observed in this study showed a tendency to

implement just one aspect of an algorithm while ignoring others. This “algorithmic

centration” can be observed comparing the solutions of these two tasks:

1) “There are two trees standing side by side on a meadow. A couple of years later

the trees have been grown. Tina connects the trunks with a string. How does it look

like?“

2) “There is a parasol standing on the left side of the table. It is it not opened yet.

In the afternoon the sun is shining and it gets hot. Somebody opens the parasol. How

does it look like?”

Fig. 7. Starting images for enlargement-related tasks

The algorithms use two different metaphors for enlargement: Growing and opening

a parasol. Beside the enlargement of the circles (projections of trees), the first

algorithm additionally describes a horizontal line. 33 out of 65 students ignored the

enlargement and just drew the line between two circles of the original size (or even

smaller). Furthermore, the majority of the students who solved this task (42/65)

considered this task to be the easiest of all tasks. In case of the second algorithm the

only required transformation was the enlargement of a hexagon. Only two out of 32

students failed to model this.

7 Summary

Software developers use all kinds of metaphors for modeling digital systems.

Transferring knowledge from one domain to another is typical for computer science.

Therefore, the ability of understanding metaphorical algorithms can be considered as

facet of computational thinking. Young students at the age of 10 are able to

understand metaphorical algorithms for transforming simple geometric images at least

on a basic level. About one quarter of the fourth-graders, who participated in our

study, interpreted the given algorithms literally instead of metaphorically. The

fraction of literal comprehension dropped to 6/53 in grade six. Students tend to

metrical inaccuracy and algorithmic centration. Both can be seen as the ugly side of

abstraction. The results underline the expressive power of metaphors. Since even

young children are able to build bridges between worlds, this seems to be very natural

to human thinking.

References

1. Lakoff, G. & Núnez, R. E.: The Metaphorical Structure of Mathematics: Sketching Out

Cognitive Foundations for a Mind-Based Mathematics. In: English, Lyn D. (ed.):

Mathematical Reasoning. Analogies, Metaphors, and Images. Lawrence Erlbaum

Associates, Publishers, Mahwah, London pp. 21--92 (1997)

2. Lindstrom, L. & Jeffries, R.: Extreme Programming and Agile Software Development

Methodologies. In: Information Systems Management Volume 21, Issue 3, pp. 41--52

(2004)

3. Beck, K.: Extreme Programming Explained. Addison Wesley, Boston San Francisco New

York Toronto Montreal London Munich Paris Madrid Capetown Sydney Tokyo Singapore

Mexico City (1999)

4. Torreano, L. A., Cacciari, C. & Glucksberg, S.: When Dogs Can Fly: Level of Abstraction

as a Cue to Metaphorical Use of Verbs. In: METAPHOR AND SYMBOL, 20(4), 259--274 (2005)

5. Van Hiele, P.M.: Developing Geometric Thinking through Activities that begin with Play.

In: Teaching Children Mathematics 6 (February 1999), pp. 310--316 (1999)

6. Fuys D., Geddes D., Tischler R.: The van Hiele Model of Thinking in Geometry among

Adolescens. In: Journal for Research in Mathematics Education. Monograph, Vol. 3, pp. i-

196. Published by: National Council of Teachers of Mathematics,

http://www.jstor.org/stable/749957 (1988).

7. Clements D.H., Sarama J.: Early childhood teacher education: the case of geometry. In:

Journal of Mathematics Teacher Education, Vol. 14, Number 2, pp. 133--148, Springer

(2011)

8. Jakimanskaja, I.S.: Развитие пространственного мышления школьников. [Development

of Pupils‟ Spatial Thinking], Moscow (1980)

9. Grabauskiene V.: Formation of Geometric Images at Primary School Stages. Summary of

Doctoral Dissertation. Vilnius Pedagogical University (2005)

10. Piaget, J. & Inhelder, B.: The Child's Conception of Space. Rutledge & Kegan Paul, New

York (1956)

Note

Vaiwa Grabauskiene‟s fellowship is being funded by European Union Structural

Funds project ”Postdoctoral Fellowship Implementation in Lithuania” within the

framework of the Measure for Enhancing Mobility of Scholars and Other Researchers

and the Promotion of Student Research (VP1-3.1-ŠMM-01) of the Program of Human

Resources Development Action Plan.

http://www.informaworld.com/smpp/title~db=all~content=t768221794~tab=issueslist~branches=21
http://www.informaworld.com/smpp/title~db=all~content=t768221794~tab=issueslist~branches=21
http://www.amazon.de/Childs-Conception-Space-Piaget-Selected/dp/0415168899/ref=sr_1_1?ie=UTF8&qid=1308722785&sr=1-1-catcorr
http://www.amazon.de/Childs-Conception-Space-Piaget-Selected/dp/0415168899/ref=sr_1_1?ie=UTF8&qid=1308722785&sr=1-1-catcorr

ISSEP 2011

1

Teaching and Learning Styles in Informatics

Gabriela Andrejková, gabriela.andrejkova@upjs.sk
Institute of Informatics, Faculty of Science, P. J. Šafárik University in Košice

František Galčík, frantisek.galcik@upjs.sk
Institute of Informatics, Faculty of Science, P. J. Šafárik University in Košice

Ľubomír Šnajder, lubomir.snajder@upjs.sk
Institute of Informatics, Faculty of Science, P. J. Šafárik University in Košice

Abstract

At the university we can observe some differences how students prefer to learn. The individual
preferences to the learning are called the learning styles. When the students study in some
ways that match their preferences, they learn more effectively. The teachers should prepare
their teaching styles in the cooperation to student preferences and to do teaching and learning
process more effective. The workshop is dedicated primarily for informatics teacher trainers and
also informatics teachers.

Main aims of the workshop are:

 to point out of importance of consideration of teaching and learning styles in informatics
education,

 to show our experience how to apply theories about teaching and learning styles to
teaching programming at university level, and

 to discuss with workshop participants about ways of properly adapting their teaching
styles to learning styles of students or pupils.

The workshop consists of three parts. In first part we give some short description of teaching
and learning styles and overview of the theories about teaching and learning styles (by Fleming,
Kolb, Dunn&Dunn).

In second part workshop participants can fulfil learning and teaching styles questionnaires to
know more about themselves and then we discuss about ways of adaptation teaching styles to
various learning styles of students. We will analyse the system of questions in the used
questionnaire.

In last part we show our experiences with teaching programming at university level with
consideration of various learning styles of students and teaching styles of teachers. The main
goal is to call some discussion of participants about problems in the area.

Keywords

Informatics education, learning styles, teaching styles, VARK model, university level

ISSEP 2011

1

Model Checking with Uppaal in a High School
Computer Science Course

Nataša Grgurina, n.grgurina@rug.nl
University Center for Learning and Teaching, University of Groningen, the Netherlands

Abstract

In traditional Computer Science courses in high school, a lot of time and effort is spent on
teaching programming, whereas in industry and academia there is a clear trend showing the
increasing importance of modeling. Models can describe system requirements, behavior and
functionality of a particular system and can contribute to better understanding of its design, code
generation, implementation, and maintenance; as well as aid in the communication with clients
and other participants involved in a project. High schools should follow this trend and pay (more)
attention to modeling, and in particular, to the construction of models of systems and analysis of
these models. [1]

Uppaal is a software tool (free for use in academia) that can model a system describing it as
networks of automata:

Uppaal is an integrated tool environment for modeling, simulation and verification of real-
time systems, developed jointly by Basic Research in Computer Science at Aalborg
University in Denmark [3] and the Department of Information Technology at Uppsala
University in Sweden [4]. It is appropriate for systems that can be modeled as a
collection of non-deterministic processes with finite control structure and real-valued
clocks, communicating through channels or shared variables. Uppaal consists of three
main parts: a description language, a simulator and a model-checker. [2]

During the workshop the author intends to give a short demonstration of Uppaal, followed by few
examples of systems that are suitable for modeling in a high school CS course. She plans to
discuss her experiences with teaching modeling with Uppaal to her 11th and 12th grade students;
the difficulties they experience when abstract thinking is required (for example for Wolf, Goat
and Cabbage riddle) and their enthusiasm when they succeed in modeling an occurrence such
as vending machine or having model checker prove that there does (not) exist a solution for a
riddle.

Keywords

high school CS course, modeling, automata,
state diagrams, Uppaal

References

1. Vaandrager, F., Jansen, D. N.,
Koopmans, E.: Een Module over Model
Checking voor het VWO. In: Vodegel, F.,
Loots, M. (eds.). NIOC 2009, pp. 135-
137. Hogeschool Utrecht, Utrecht (2009)

2. Uppaal, http://www.uppaal.org/
3. Basic Research in Computer Science,

http://www.brics.dk/
4. Department of Information Technology,

http://www.it.uu.se/

Figure 1.Uppaal editor

http://www.uppaal.org/
http://www.brics.dk/
http://www.it.uu.se/

ISSEP 2011

1

Fostering creativity through programming -
Scratch workshop

Martina Kabátová, kabatova@fmph.uniba.sk
Dept of Informatics Education, Comenius University, Bratislava

Katarína Mikolajová, mikolajova@fmph.uniba.sk
Dept of Informatics Education, Comenius University, Bratislava

Abstract

Scratch provides pupils with an easy way to create multimedia projects. If it's properly used,
students learn computer programming concepts. The purpose of our workshop is to explore
activities and teacher approaches that enable pupils to express their ideas through programming
and develop their creativity during this process. We will focus on multimedia projects and games
that provide pupils with an opportunity to engage their imagination and at the same time give
them some freedom to express themselves in a unique way. We will try to introduce some
divergent activities with open-ended results and various approaches for solving problems.

 Figure 1. Scratch – programming tool for pupils

During the workshop we will discuss creative approaches to solving selected tasks and projects.

Keywords

programming, creativity, multimedia projects

mailto:kabatova@fmph.uniba.sk

ISSEP 2011

1

Music structure and computer science concepts

Illustrating CS ideas by creating and modifying music

Erich Neuwirth, erich.neuwirth@univie.ac.at
University of Vienna, Computer Science Didactics and Learning Research Center

Abstract

When teaching computer science concepts, it is always difficult to find sets of problems
attracting the students' attention. The workshop will give the participants the chance of
experimenting with musical ideas (and, more generally, ideas about creating sounds) with a set
of easy to use tools to create and manipulate structure. Writing a score for a musical piece can
be seen as writing a program, and identifying musical structures can be seen as identifying
structures in programs. Representing music in different notations (musical score, piano roll,
numerical representations, MIDI) also naturally leads to discussions about the nature of different
representations.

We use a set of two toolkits. The first one is spreadsheet based. Building on the ubiquitous
spreadsheet paradigm students can immediately create their own musical pieces and listen to
them. The toolkit allows musical operations like repeating, transposing or changing the tempo of
musical phrases.

As the musical ideas get more complex, the spreadsheet paradigm becomes too narrow, and
therefore we can introduce a more powerful LOGO based toolkit. With this toolkit, the computer
science concepts like data structures and even unit testing can be introduced.

The toolkit has been tested with high school and undergraduate students quite successfully. It
seems that music the theme of a CS introductory course is able to attract the attention of
students in a natural way.

The combination of the spreadsheet toolkit and the more abstract LOGO toolkit allows designing
activities according to the ideas of low floor - high ceiling. Students create music they like within
the first 15 minutes of activities, and there is almost no limit for the complexity of the music ideas
they can implement.

The toolkits are open source and available for download.

Keywords

Computer science, didactics, music, notation

ISSEP 2011

1

TurtleArt

Artemis Papert, artemis@turtleart.org
Independent artist, Montreal, Canada

Abstract

TurtleArt is a microworld for exploring art through turtle geometry. It brings programming and art
together. The main focus of TurtleArt is static artistic images.

Figure 1. Some TurtleArt images.

TurtleArt programmes are created by snapping together blocks. It borrows from the earliest
versions of LOGO by having a vocabulary centred around Turtle Geometry. The vocabulary of
TurtleArt is small, therefore fluency can be reached fairly quickly.

In this workshop you will get an introduction to programming in TurtleArt but mainly you will be
given lots of hands on time to do your own exploration and create your own images.

Bring your laptop along.

Keywords

TurtleArt, turtle geometry, LOGO, constructionism, art, programming, fluency.

ISSEP 2011

1

Program by Design

Viera Krňanová Proulx, vkp@ccs.neu.edu
College of Computer & Information Science, Northeastern University, Boston, MA, USA

Abstract (style: Abstract title)

The goal of Program By Design methodology is to teach children how to solve problems by
following a systematic design process, regardless of the programming environment. The Design
Recipes organize the design process into small steps that allow both the learner and the teacher
to monitor the progress and to verify the learner's understanding of the problem.

The workshop will present the key ideas of the Program By Design methodology illustrated on
the curriculum used with students from 6th grade of elementary school all the way though the
introductory university.

Children and students design the behaviour of interactive games: the functions that represent
the movement of the game objects, the predicates that check for collision of objects, or whether
an object has reached the desired destination, the functions that update the game score or other
measure of the game progress, and the functions that place the game objects onto the game
display. The design of these functions is a simple application (or practice) of algebra and
geometry knowledge.

 Figure 1. Frogger game and a Mario-like game designed by students.

The Bootstrap level is designed for children in grades 6 through 8, the How to Design Programs
level targets the secondary school students as well as introductory university level, the How to
Design Classes extends the curriculum to reach advances secondary school students as well as
university students.

We will first present the general framework for Program by Design, show the power of the
Design Recipes, and follow with a hands-on session individualized for the participants. The
participants can work on that segment that is most applicable to the level of their students.

Keywords

programming; didactics of design

ISSEP 2011

1

Creating interactive board games with Easy Logo

Maria Skiadelli, skiadelli@gmail.com
Deptof Electrical and Computer Engineering, National Technical University of Athens

Abstract

EasyLogo is an environment based on common Logo principles which mainly focuses on
teaching basic programming techniquesto novices and young children. This workshop is about
creating interactive board games with the EasyLogo environment.

Interactive board games are not very similar to the typicalelectronic games where there is some
action that takes place throughout the game, whilst the player (human or the computer itself)
can control this action to achieve certain goals. They are more like the common board games
played by several human players (1-2 or more) whocompete with each other following certain
rules. We claim that when implemented as software products, these gamesmay become more
interesting since they acquire some degree of interactivity that is missing from the classical
board gamesfound on a singlepiece of paper.Moreover, these games not only can be
implemented by programming but they can also be played by programming, which is a very
good practice, especially for the very beginners of the programming field. EasyLogo, although
simple to use, processes some interesting features that allow the implementation of
severalinteresting board game ideas.

Figure 1.Screenshots of interactive board games created with EasyLogo

In this workshop we will first showsome pre-made examples of interactive board games in order
to explain the basic idea and philosophy behind the creation of such games and to give
inspiration to the participants. Technical details of the environment will also be explained. Then
the participants will form groups (of 2 or 3 members) and each group will have to think of its own
game idea andimplement itwithEasyLogo. While creating such a game,the groupswill have to
take decisionsthat need critical and creative thinking: the rules of the game, how many players
can play, who wins and when, how to provide (if needed) randomness and many others,
concerning design, aesthetical and structural issues. A worksheet will help them not to miss any
of these important factors. The implementation of the game is an iterative process;the members
of each group have to play it while implementing it, by using programming again, in order
totestits functionality, to see if it is interesting enough, etc. When finished, they will share it with
other groups. Playing other people’sgamesis not only good for feedback, butit can also begreat
fun.

Keywords

board games, logo, programming, ICT teaching

	ISSEP 2011
	Contents
	Foreword

